

Phase 2 Environmental Site Assessment, Parcel 8

Prepared for: Hydro Aluminium Kurri Kurri Pty Ltd

Prepared by: ENVIRON Australia Pty Ltd

Date: April 2015

Project Number: AS130348

Prepared by:

Name: Kirsty Greenfield Name: Fiona Robinson Title: **Environmental Scientist** Title: Manager - Hunter Phone: 02 4962 5444 Phone: 02 4962 5444

Email: kgreenfield@environcorp.com Email: frobinson@environcorp.com Date:21/4/15 Signature: Signature: Date:21/4/15 KGreenfeld

This document is issued in confidence to Hydro Aluminium Kurri Kurri Australia Ptv Ltd for the purposes of a Phase 2 Environmental Site Assessment. It should not be used for any other purpose. The scope of the Phase 2 Environmental Site Assessment was based on ENVIRON's proposal dated 25 July 2013.

Authorised by:

The report must not be reproduced in whole or in part except with the prior consent of ENVIRON Australia Pty Ltd and subject to inclusion of an acknowledgement of the source. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties. This report does not purport to give legal advice. Legal advice can only be given by qualified legal practitioners.

Whilst reasonable attempts have been made to ensure that the contents of this report are accurate and complete at the time of writing, ENVIRON Australia Pty Ltd disclaims any responsibility for loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this report.

Specific assumptions and limitations identified by ENVIRON as being relevant are set out in the report. The methodology adopted and sources of information used by ENVIRON are outlined in our scope of work. ENVIRON has made no independent verification of this information beyond the agreed scope of works.

This report should be read in full.

© ENVIRON Australia Pty Ltd

VERSION CONTROL RECORD

Document File Name	Date Issued	Version	Author	Reviewer
AS130348 Parcel8_Phase 2_D1	May 2014	Draft 1	K Greenfield	F Robinson
AS130348 Parcel8_Phase 2_FINAL	June 2014	FINAL	K Greenfield	F Robinson
AS130348 Parcel8_Phase 2_FINAL_V1	April 2015	FINAL	K Greenfield	F Robinson

Contents

		Page
1	Introduction	3
1.1	Background	3
1.2	Objectives and Scope of Work	3
2	Site Description	5
2.1	Site Location	5
2.2	Site Setting	5
2.2.1	Topography	5
2.2.2	Regional Geology	6
2.2.3	Site Hydrology	6
2.2.4	Regional Hydrogeology	6
2.3	Site Sensitivity	6
3	Site History	8
4	Sampling and Analytical Quality Plan	9
4.1	Potential Areas and Contaminants of Concern	9
4.2	Data Quality Objectives and Data Quality Indicators	9
4.3	Sampling Design	9
4.3.1	Fluoride	9
4.3.2	Asbestos	10
4.3.1	Potential Fill	10
5	Basis for Assessment Criteria	12
5.1	Soil	12
6	Results	16
6.1	Site Walkover	16
6.2	Soil Investigations	16
6.2.1	Fluoride	16
6.2.2	Fill Material	16
6.3	Soil Results	17
6.4	Quality Assurance/ Quality Control	18
7	Site Characterisation	19
7.1	Conceptual Site Model	19
7.2	Waste Characterisation and Disposal	19
8	Conclusions and Recommendations	20
9	References	22
10	Limitations	23
10 1	User Reliance	23

List of Figures

Figure 1: Site Location Plan

Figure 2: Location of Development Parcel 8 on the Masterplan

Figure 3: Site Layout and Surface Sampling Locations

List of Tables

Table 1: Lot and Development Plans for Parcel 8.

Table 2: Soil Assessment Criteria (mg/kg) – Health and Ecological Investigation

Levels

Table 3: Soil Assessment Criteria for Vapour Intrusion – HSL D – Sand
 Table 4: ESLs and Management Limits for Petroleum Hydrocarbons in Soil
 Table 5: Health Screening Level for Asbestos Contamination in Soil (w/w)

Table 6: Site Specific Soil Assessment Criteria for Fluoride

Table 7: Summary of Soil Results

List of Appendices

Appendix A: Surrounding Groundwater Bores

Appendix B: Site Photographs

Appendix C: Field Information Sheets and Logs

Appendix D: Results Tables

Appendix E: Laboratory Reports

Appendix F: QA/QC Assessment

Acronyms and Abbreviations

ACM Asbestos Containing Materials AHD Australian Height Datum ALS Australian Laboratory Services

BGL Below Ground Level

BTEX Benzene, toluene, ethyl benzene, xylenes

CT Certificate of Title

DEC NSW Department of Environment and Conservation, now EPA

DP Deposited Plan
DQI Data Quality Indicator
DQO Data Quality Objective

EIL Ecological Investigation Level

EPA NSW Environment Protection Authority

ESA Environmental Site Assessment

F Fluoride

GMU Groundwater Management Unit GPS Global Positioning System

Ha Hectare

HIL Health Investigation Level
HSL Health Screening Level
HRA Health Risk Assessment

km Kilometres LOR Limit of Reporting

m Metres m³ Cubic metres

mg/kg Milligrams per Kilogram mg/L Milligrams per Litre

m AHD Metres relative to the Australian Height Datum

m BGL Metres below ground level mg/L Micrograms per Litre ML Mega litres, 100000L

NATA National Association of Testing Authorities

ND Not Detected

NEHF National Environmental Health Forum
NEPC National Environment Protection Council
NEPM National Environment Protection Measure
NHMRC National Health and Medical Research Council

NSW New South Wales n Number of Samples

OH&S Occupational Health & Safety
OPP Organophosphate pesticides
OCP Organochloro pesticides

PAH Polycyclic aromatic hydrocarbons
PQL Practical Quantitation Limit
QA/QC Quality Assurance/Quality Control
RPD Relative Percent Difference
TPH Total Petroleum Hydrocarbon

UCL Upper Confidence Limit µg/L Micrograms per Litre

VENM virgin excavated natural material

On tables is "not calculated", "no criteria" or "not applicable"

Executive Summary

This report presents the findings of a Phase 2 Environmental Site Assessment undertaken on part of the Hydro Aluminium Kurri Kurri (Hydro) owned land known as Parcel 8. Parcel 8 is a rural property comprising approximately 54ha and is accessed from Bishops Bridge Road, Loxford and located within the buffer zone and to the west of the Hydro Aluminium Kurri Kurri Smelter. Parcel 8 comprises bushland, with one area of disturbed land and limited tree cover in the centre of the parcel. A dirt bike racing track has been constructed in this cleared area.

In 2012, Hydro suspended operations at the Kurri Kurri Smelter and implemented care and maintenance until permanent site closure was announced in May 2014. Environmental investigations commenced at the time of suspension to assess site remediation requirements and the potential for land divestment. This work was undertaken in conjunction with the development of a Rezoning Masterplan, which identified possible end land use scenarios.

The objectives of this Phase 2 ESA assessment were to identify, review and report on the potential for contamination at Parcel 8 based on historical and current landuse and to assess the suitability of Parcel 8 for the proposed environmental conservation (E2) land use.

A Phase 1 ESA has previously been completed for the Hydro owned lands including Parcel 8 (ENVIRON (22 October 2013) Phase 1 ESA, Hydro Kurri Kurri Aluminium Smelter). The Phase 1 identified that contamination of Parcel 8 may have occurred from dust deposition due to the proximity of the Hydro smelter, illegal dumping due to the remoteness of the area, the former presence of a hobby farm and localised soil contamination from the use of a dirt bike track.

To assess for potential contaminants of concern on Parcel 8, a site walkover was completed and surface soil samples were collected from across the parcel. Surface soil samples were also collected from a number of soil stockpiles located around the dirt bike track.

Intrusive investigations into stockpiles associated with the dirt bike track identified disturbed topsoil underlain by yellow/brown clay. No waste materials and no contamination associated with heavy metals, petroleum hydrocarbons (TPH/BTEX), Polycyclic Aromatic Hydrocarbons (PAHs), Organochlorine Pesticides (OCPs), Organophsphorous Pesticides (OPPs) and asbestos were identified within the disturbed topsoil fill material.

An old car body and an area of illegally dumped asbestos containing materials (ACM) and other wastes including tile, house brick and concrete pieces, was identified adjacent to Bishops Bridge Road in the north eastern corner of Parcel 8. No other soil contamination issues were identified at Parcel 8.

Parcel 8 is considered suitable for the current landuse and the proposed environmental conservation (E2) landuse.

Hydro has separately engaged a NSW EPA-accredited Site Auditor to issue a Site Audit Statement certifying that the site is suitable for the proposed use.

ENVIRON considers that interim management is required to remove illegally dumped wastes and secure the site, as follows:

- An appropriately licensed asbestos removal contractor be engaged to remove and dispose of the asbestos waste. Validation of the area following removal should be undertaken by an appropriately qualified consultant and documented.
- For aesthetic reasons, the car body should be removed from the site and recycled as appropriate.

1 Introduction

1.1 Background

This report presents the findings of a Phase 2 Environmental Site Assessment undertaken on part of the Hydro Aluminium Kurri Kurri Pty Limited (Hydro) owned land known as Parcel 8. Parcel 8 is located off Bishops Bridge Road, Loxford, New South Wales (2326). The location of Parcel 8 is shown in **Figure 1**.

The work has been performed at the request of Hydro Aluminium Kurri Kurri Pty Limited (the "Client").

Hydro is currently evaluating options for the divestment of land parcels for a range of land uses following the closure of the site in May 2014. A Rezoning Masterplan has been developed that identifies Parcel 8 to comprise land suitable for environmental conservation (E2) land use.

A Phase 1 Environmental Site Assessment has previously been prepared for all Hydro owned lands and evaluated the potential for contamination. The Phase 1 identified that contamination of Parcel 8 may have occurred from dust deposition due to the proximity of the Hydro smelter, illegal dumping due to the remoteness of the area, activities of a former hobby farm and localised soil contamination from the use of a dirt bike track.

It is noted that at the time of the fieldwork, this land parcel was named Employment Land Subarea 8 and as such the soil samples reference this name. Prior to the completion of this report, a Masterplan was completed for Hydro-owned land and the name of the land parcel as referenced in this report subsequently changed to Parcel 8.

The location of Parcel 8 in the context of the Rezoning Masterplan is shown in Figure 2.

1.2 Objectives and Scope of Work

The objectives of the assessment were to assess the potential for contamination at Parcel 8 based on historical and current land use and to assess the suitability of Parcel 8 for the proposed environmental conservation (E2) land use.

The scope of work performed to meet the objectives comprised:

- A review of available information relating to land use to assess the potential for soil, groundwater or surface water contamination arising from historic and current activities;
- A review of published geological, hydrogeological and hydrological data to establish the environmental setting and sensitivity;
- Field work comprising:
 - Collection of surface soil samples to provide a coarse grid assessment of potential dust deposition from the smelter operations;
 - A site walkover to evaluate other potential locations of buried waste or illegal dumping;
 - Use of a back hoe to excavate into soil stockpiles and collect samples for analysis of potential contaminants of concern.

- Data interpretation including comparison against relevant guidelines and a discussion of the findings in terms of human health and environment risk under the current and future land use scenarios.
- Review of options available for remediation or management to render Parcel 8 suitable for the proposed land use.

2 Site Description

2.1 Site Location

Parcel 8 is owned by Hydro Aluminium Kurri Kurri Pty Limited and is located approximately 35km north west of the city of Newcastle and 150km north of Sydney, in the suburb of Loxford, Kurri Kurri, New South Wales, Australia. Parcel 8 is accessed from Bishops Bridge Road. The location of Parcel 8 is shown in **Figure 1**.

Parcel 8 is located within the Buffer Zone of the Hydro Aluminium Kurri Kurri Smelter, to the west of the smelter. The Buffer Zone is an area of land surrounding the smelter that provides a buffer between the smelter and surrounding communities. Parcel 8 generally comprises bushland, with a large area of disturbed land and limited tree cover in the centre of the parcel. A dirt bike racing track has been constructed in this cleared area.

Parcel 8 is located within the Cessnock Local Government Area and is zoned RU2 – Rural Landscape under the Cessnock Local Environment Plan.

Parcel 8 is approximately 54 hectares (ha) and comprises the lot numbers in the deposited plans (DP) listed in **Table 1**:

Table 1: Lot and Depos	able 1: Lot and Deposited Plans for Parcel 8.				
Subarea	Lot/ DP	Area (ha)	Total Area (ha)		
Parcel 8	Lot 13 DP1082775 Pt 1 Lot 14 DP1082775 Lot 15 DP1082775 Pt 1	0.7 22.8 1.3	25.2		

Land uses surrounding Parcel 8 are as follows:

- North: Dense bushland;
- South: Hunter Expressway then bushland and farmland;
- East: Bishops Bridge Road then bushland and the smelter:
- West: Hunter Expressway then bushland.

2.2 Site Setting

2.2.1 Topography

Parcel 8 is located in an area of the Buffer Zone that is of higher elevation at approximately 17 mAHD. The topography of Parcel 8 is relatively flat, with a gentle slope to the south east. The natural topography slopes towards the centre of Parcel 8, where a tributary of Black Waterholes Creek bisects the parcel.

2.2.2 Regional Geology

According to the review of the regional geology described on the Sydney Basin Geological Sheet, Parcel 8 is underlain by siltstone, marl and minor sandstone from the Permian aged Rutherford Formation (Dalwood Group) in the Sydney Basin.

Undifferentiated Quaternary alluvium occurs on the surface of Parcel 8 associated with surface water bodies. Quaternary sediments which are associated with Black Waterholes Creek, a tributary of which bisects Parcel 8; Swamp Creek (approximately 400m south east of Parcel 8) and the Hunter River consist of gravel, sand, silt and clay.

2.2.3 Site Hydrology

Surface water from Parcel 8 discharges primarily via infiltration and overland flow to a tributary of Black Waterholes Creek located in the centre of the parcel. Black Waterholes Creek discharges into Wentworth Swamp, which in turn discharges to the Hunter River approximately 11km northeast of Parcel 8 near Maitland.

The Wentworth Swamp system is within the Fishery Creek Catchment, where declining stream water quality and a reduction in diversity of native plants and animals has occurred due to population growth and development pressures in the last ten years (Hunter-Central Rivers Catchment Management Authority 2000).

2.2.4 Regional Hydrogeology

Regional groundwater is expected to follow topography and flow northeast towards the surface water bodies that discharge to the Hunter River. Locally, groundwater beneath Parcel 8 is expected to flow north east and south west towards the tributary of Black Waterholes Creek located in the centre of the parcel.

According to the NSW Office of Environment and Heritage (Natural Resource Atlas), there are 11 licensed groundwater abstractions (bores) located within 1km of Parcel 8. The majority of the groundwater bores are located within the aluminium smelter and buffer zone. Information for 11 bores located in a 1km radius from Parcel 8 has been included in Appendix A. The bores are used for monitoring purposes. No further information, such as depth to water or logging information was provided.

The Hunter River Alluvium Groundwater Management Unit (GMU) is an important groundwater resource to the region. Groundwater extraction for irrigation, urban supply, drought supply, stock, domestic and commercial/ industrial use occurs, with volumes in excess of 10,000ML per annum extracted from the Hunter River Alluvium GMU. Aquifer storage and recovery is also an important use of this GMU. It is noted that the Hunter River GMU is not the primary drinking water supply in the region, although the protection of drinking water is a water quality objective for the Hunter River (NSW Water Quality and River Flow Objectives) (www.environment.nsw.gov.au/ieo/Hunter/index.htm).

2.3 Site Sensitivity

The sensitivity of Parcel 8 with respect to surface water and groundwater is considered to be moderate based on the following:

Surface water and groundwater discharge into an unnamed tributary of Black
 Waterholes Creek, located in the centre of Parcel 8, which discharges to the Hunter

River via Wentworth Swamp within the Fishery Creek Catchment, approximately 11km northeast of Parcel 8 near Maitland.

- Declining stream water quality and a reduction in diversity of native plants and animals has occurred within the Fishery Creek Catchment and water quality down gradient of Parcel 8 has been impacted by historical coal mining;
- The Hunter River GMU is used for irrigation, urban supply, drought supply, stock, domestic and commercial/ industrial use but it is not the main drinking water supply in the region.

3 Site History

Site history investigations included in the Phase 1 ESA for the Hydro Aluminium Kurri Kurri Smelter, dated 26 August 2013, provided the following historical information relevant to Parcel 8:

- Earliest records (aerial photograph in 1951) showed the hobby farm in the centre of Lot 14. The hobby farm comprised three small buildings, which were demolished in the late 1980s. No further buildings are evident since this time. The remainder of Parcel 8 was observed to be bushland.
- The 2006 aerial photograph shows the presence of the dirt bike racing track that was constructed in the cleared area of the former hobby farm after 2001. The racing track was used as a practice track by one Hydro employee and is no longer in use. No soil was imported to Parcel 8 to construct the track. Information on the dirt bike track was provided by Mr Kerry McNaughton, Hydro employee.
- Additionally, Parcel 8 is located approximately 1km from the smelter boundary and may be impacted from smelter dust deposition.
- The remoteness of Parcel 8 and surrounding bushland may also give rise to illegal dumping though it is noted that the buffer zone area is fenced and regularly monitored by Hydro personnel.

A site plan showing the location of the hobby farm is included in **Figure 3**. Photos are presented in **Appendix C**.

4 Sampling and Analytical Quality Plan

4.1 Potential Areas and Contaminants of Concern

Based on Parcel 8 historical information as discussed in **Section 3**, the following areas of concern were identified:

- Debris from the demolition of the hobby farm.
- Use of the former hobby farm area as a farm (grazing) and later as a dirt bike track.
- Smelter dust deposition.
- · Illegal dumping.

Potential contaminants of concern associated with the range of previous site activities are:

- Asbestos:
- Fluoride;
- Total Petroleum Hydrocarbons (TPH);
- Benzene, Toluene, Ethyl benzene, Xylene (BTEX);
- Polycyclic Aromatic Hydrocarbons (PAHs);
- Organochlorine Pesticides (OCPs) and Organophosphorous Pesticides (OPPs);
- Illegally dumped materials.

Impacts to surface water and groundwater could occur from soluble contaminants where these are present above background concentrations. Historical site information does not suggest that impacts to surface water and groundwater have occurred and evaluation of these media has not been included at this time. Further evaluation can be undertaken where contaminants in soil are present at levels that are likely to result in impacts to surface water or groundwater.

4.2 Data Quality Objectives and Data Quality Indicators

Data quality objectives (DQOs) and Data Quality Indicators (DQIs) were developed by ENVIRON using the US EPA seven-step DQO process. Completing the seven-step process helps to define the purpose of the assessment and the type, quality and quantity of data needed to inform decisions relating to the assessment of site contamination.

The seven-step DQO process and DQIs are included in **Appendix F**.

4.3 Sampling Design

The sampling design was optimised following the development of DQOs and DQIs. The sampling design is outlined below. ENVIRON notes that the historical site activities indicate potential contamination to surface soils only. Where fill was identified during the site walkover, a second round of field investigations was completed to assess subsurface soils. No potential contamination sources to surface water or groundwater have been identified.

4.3.1 Fluoride

To assess the potential for fluoride in soil from dust deposition from the Hydro Aluminium Kurri Kurri Smelter, surface soil samples were collected at a rate of one sample per 5Ha.

The sample density is lower than that suggested in Table A of NSW EPA (1995) Contaminated Sites: Sampling Design Guidelines. The density is considered adequate for the purposes of this investigation for the following reasons:

- aerial dust deposition is likely to be relatively consistent over the surface of the parcel and therefore sampling on a low density will allow for identification of whether or not dust deposition is an issue; and
- in the event that elevated or variable fluoride concentrations are identified, additional sampling will be completed.

Samples were collected by trowel from surface soils in accessible areas of Parcel 8. As Parcel 8 comprises inaccessible dense bushland, samples were collected around the perimeter of the bushland and in open areas, where accessible. Sample locations were logged by GPS.

Soil samples were placed into laboratory-supplied paper bags and stored in an ice-filled cooler for transportation to the laboratory. Soil samples were transported to the laboratory under chain of custody conditions. Intra-laboratory duplicate soil samples were collected at a rate of 10%.

Soil samples were analysed for soluble fluoride, as this is the portion of total fluoride that is available for uptake in receptors including biota, flora, fauna and humans. The laboratory was NATA accredited for the analysis.

4.3.2 Asbestos

To assess the potential for asbestos and other illegally dumped wastes to be present at Parcel 8, a site walkover of accessible areas was completed. ENVIRON consider that dense bushland that is not readily accessible by foot is unlikely to have been accessed for waste dumping.

The location and type of dumped wastes were detailed on Field Information Sheets and logged by GPS. Where asbestos was confidently identified by the field personnel, no sampling was completed. If not, a sample of potential asbestos containing material (ACM) was collected for laboratory analysis. ACM fragments were collected into a zip-lock bag using dedicated disposable gloves.

ACM fragments were analysed for asbestos identification by a laboratory NATA accredited for the analysis.

4.3.1 Potential Fill

The site walkover identified the potential for fill material at Parcel 8 associated with the dirt bike track. Initially, soil samples were collected from the surface of six of the stockpiles for analysis. Following this, a second round of fieldwork was completed including excavation into the stockpiles to assess the potential for fill material.

A back hoe was used to excavate five test pits into areas of potential fill identified at Parcel 8. The test pits were logged by an ENVIRON environmental scientist and soil samples were collected for analysis.

Soil samples were collected into laboratory-supplied acid-rinsed glass jars using dedicated disposable gloves. The soil samples were stored in an ice-filled cooler for transportation to the laboratory. Soil samples were transported to the laboratory under chain of custody conditions. Intra-laboratory duplicate soil samples were collected at a rate of 10%.

Soil samples were analysed for a range of potential contaminants, including heavy metals, total recoverable hydrocarbons (TRH), polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), organophosphorous pesticides (OPPs) and asbestos. The laboratory was NATA accredited for the analysis.

5 Basis for Assessment Criteria

5.1 Soil

The criteria proposed for the assessment of soil contamination were sourced from the following references:

• NEPC (2013) National Environmental Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1) (NEPM).

The variation to the National Environmental Protection (Assessment of Site Contamination) Measure (NEPM 2013) was approved on 19 June 2013 by the NSWEPA under the *Contaminated Land Management Act 1997*. NEPM (2013) provide revised health-based soil investigation levels (HILs) and ecological-based investigation levels (EILs) for various land uses. The NEPM 2013 also introduces health-based and ecological screening levels and management limits for petroleum hydrocarbons (HSLs and ESLs). The levels have been derived from recent assessments that more accurately define the exposure mechanisms and risks from sites contaminated with petroleum hydrocarbons.

The guidelines adopted for the site from the NEPM are as follows:

- HIL D Health investigation level for commercial/industrial such as shops, offices, factories and industrial sites. The HILs are applicable for assessing human health risk via all relevant pathways of exposure. The HILs are generic to all soil types and apply generally to a depth of 3 m below the surface for industrial use.
- HSLs for commercial/industrial use Health screening levels for soil vapour intrusion from petroleum hydrocarbons are guidelines that prevent accumulation of vapours at concentrations that may represent a health risk. The HSLs are derived for various depths and are for the same generic land uses as for the HILs. The guidelines are relevant were soils are beneath building or structures such as confined spaces;
- EIL for commercial/ industrial use ecological investigations levels applicable for assessing risk to terrestrial ecosystems. EILs depend on specific soil physicochemical properties and generally apply to the top 2 m of soil.
- ESLs for commercial/ industrial use ecological screening levels developed for selected petroleum hydrocarbon compounds and fractions and are applicable for assessing risk to terrestrial ecosystems. These are also generally applicable to the top 2m of soil.
- Management Limits where concentrations above these limits may indicate poor aesthetics, high odour and potentially explosive vapour. Management limits are to be applied after consideration of relevant ESLs and HSLs.

The applicable assessment criteria for heavy metals and PAHs in soil are presented in **Table 2**:

Table 2: Soil Assessment Criteria (mg/kg) – Health and Ecological Investigation Levels			
	HIL D	EIL	
Arsenic	3000	160	
Cadmium	900	-	
Chromium (VI)	3600	320 (CR III, 1% clay)	
Copper	240 000	35	
Lead	1500	1800	
Nickel	6000	6	
Zinc	400 000	120	
Mercury (inorganic)	730	-	
Fluoride	Ref Table 5	Ref Table 5	
Cyanide (free)	1500	-	
Carcinogenic PAHs (as BaP TEQ)	40	-	
Naphthalene	-	370	
Total PAHs	4000	-	
DDT+DDE+DDD	3600		
Aldrin +dieldrin	45		
Chlordane	530		
Endosulfan	2000		
Endrin	100		
Heptachlor	50		
Methoxychlor	2500		
Chlorpyrifos	2000		

¹ EILs represent the added contaminant limit plus the average background concentration. As a first screening assessment only the ACL has been incorporated in the EIL above. Where concentrations are in excess of the ACL, then evaluation d of the ABC would be undertaken. ACLs were calculated using the NEPM (2013) EIL Calculation Spreadsheet.

The applicable assessment criteria for petroleum hydrocarbons in soil are presented in **Table 3** and **Table 4**:

Table 3: Soil Assessment Criteria for Vapour Intrusion - HSL D (mg/kg) - Sand				
	0 to <1m	1m to <2m	2m to <4m	4m+
Toluene	NL	NL	NL	NL
Ethylbenzene	NL	NL	NL	NL
Xylenes	230	NL	NL	NL
Naphthalene	NL	NL	NL	NL
Benzene	3	3	3	3
F1(4)	260	370	630	NL
F2(5)	NL	NL	NL	NL

¹ The soil saturation concentration (Csat) is defined as the soil concentration at which the porewater phase cannot dissolve any more of an individual chemical. The soil vapour that is in equilibrium with the porewater will be at its maximum. If the

14

derived soil HSL exceeds Csat, a soil vapour source concentration for a petroleum mixture could not exceed a level that would result in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'.

- 2 (For soil texture classification undertaken in accord with AS 1726, the classifications of sand, silt and clay may be applied as coarse, fine with liquid limit <50% and fine with liquid limit>50% respectively, as the underlying properties to develop the HSLs may reasonably be selected to be similar. Where there is uncertainty, either a conservative approach may be adopted or laboratory analysis should be carried out.
- 3 To obtain F1 subtract the sum of BTEX concentrations from the C6-C10 fraction.
- 4 To obtain F2 subtract naphthalene from the >C10-C16 fraction.

Table 4: ESLs and Management Limits for Petroleum Hydrocarbons in Soil				
TPH fraction	Soil texture	ESLs (mg/kg dry soil)	Management Limits ¹ (mg/kg dry soil)	
		Commercial and Industrial	Commercial and Industrial	
F1 C6- C10	Fine	215*	800	
F2 >C10-C16	Fine	170*	1000	
F3 >C16-C34	Fine	2500	5000	
F4 >C34-C40	Fine	6600	10 000	
Benzene	Fine	95	-	
Toluene	Fine	135	-	
Ethylbenzene	Fine	185	-	
Xylenes	Fine	95	-	
Benzo(a)pyrene	Fine	1.4	-	

Management limits are applied after consideration of relevant ESLs and HSLs.

The HSLs for asbestos are applicable for assessing human health risk via the exposure pathway of inhalation of airborne asbestos and are presented in **Table 5**. The HSLs are generic to all soil types.

Table 5. Health screening levels for asbestos contamination in soil Health Screening Level (w/w)					
Form of asbestos	Residential Residential Recreational Commercial/ A B C3 Industrial D A				
Bonded ACM	0.01%	0.04%	0.02%	0.05%	
FA and AF ¹ (friable asbestos)	0.001%				
All forms of asbestos	No visible asbestos for surface soil				

^{1.} The screening level of 0.001% w/w asbestos in soil for FA and AF (i.e. non-bonded/friable asbestos) only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.

NEPM (2013) do not provide criteria for fluoride in soils in Australia. Therefore, ENVIRON (2013) conducted a preliminary level Human Health Risk Assessment (HRA) specific to fluoride in order to derive a specific preliminary screening level for fluoride for the Hydro

² Separate management limits for BTEX and naphthalene are not available hence these should not be subtracted from the relevant fractions to obtain F1 and F2.

³ ESLs are of low reliability except where indicated by * which indicates that the ESL is of moderate reliability.

⁴ To obtain F1, subtract the sum of BTEX from C6-C10 fraction.

Aluminium Kurri Kurri Smelter . The screening levels are protective of the range of human receptors and are provided in **Table 6**:

Table 6: Site Specific Soil Assessi	Site Specific Soil Assessment Guidelines (mg/kg) for Fluoride		
Preliminary screening levels			
Land Use	Preliminary screening level		
Commercial/ industrial - soil	F 17000mg/kg		

Consistent with the guidance provided in the NEPM, the data was assessed against the above adopted site guidelines by:

- Comparing individual concentrations against the relevant guidelines and if discrete samples are in excess of the relevant guideline then;
- Comparing the 95% upper confidence limit of mean against the relevant guideline also ensuring that:
 - the standard deviation of the results is less than 50% of the relevant investigation or screening level, and
 - o no single value exceed 250% of the relevant investigation or screening level.

6 Results

6.1 Site Walkover

A site walkover was completed to identify areas of concern, such as illegally dumped wastes and fill at Parcel 8. The entrance to Parcel 8 is from Bishops Bridge Road, which borders the eastern boundary of Lot 14 and Lot 15. There are no roadways within Lot 13, Lot 14 or Lot 15.

The north western (Lot 13) and south eastern (Lot 15) portions of Parcel 8 comprised of dense bushland that appears undisturbed.

The central portion (Lot 14) of Parcel 8 comprised predominantly dense bushland with a cleared area at the location of the former hobby farm. A dirt bike track was constructed from site won soils on a cleared area of Lot 14 between 2001 and 2006 and is no longer in use. A fire trail extends from the south east corner of Parcel 8 to the southern extent of the bike track. A rusted car body was identified near the south western boundary adjacent to the Hunter Expressway. Numerous small soil stockpiles covered in grass were identified near the dirt bike track. These stockpiles ranged in size from 10m³ to 70m³. A small stockpile of building waste, including tiles, house bricks, concrete pieces and asbestos containing materials (ACM) fragments, was identified near the north eastern corner of Parcel 8 adjacent to Bishops Bridge Road. The origin of the waste stockpile is unknown.

No other signs of disturbed land or of land filling were observed during the walkover.

Photographs are included in **Appendix B**. Field Information Sheets are included in **Appendix C**.

6.2 Soil Investigations

6.2.1 Fluoride

Five surface soil samples were collected from across Parcel 8 at a rate of one sample per 5Ha to assess the potential for fluoride in soil from dust deposition from the Hydro Aluminium Kurri Kurri Smelter as shown in **Figure 3**. A generalised lithology of the surface soils encountered at Parcel 8 is as follows:

Topsoil: Sandy silt, orange/ brown with some cobbles, dry.

6.2.2 Fill Material

Six surface soil samples were collected from small (generally <15m³) soil stockpiles identified during the site walkover. This sampling was targeted sampling, completed on an area of environmental concern identified during the site walkover. These soil samples were collected by trowel from the surface of each stockpile and were analysed for petroleum hydrocarbons (TPH/BTEX) and polycyclic aromatic hydrocarbons (PAHs). It is noted that two of these samples, SP7 and SP8, were collected outside of the parcel boundary in an area of land acquired for the Hunter Expressway. This occurred as the parcel boundary is not clear in the field.

Following the surface soil sampling, intrusive investigations were completed to confirm that no fill material or wastes were present within the stockpiles. Five test pits were excavated

into five separate stockpiles and soils samples were collected from a range of depths up to 1.3m. Four samples were analysed for asbestos, heavy metals, total petroleum hydrocarbons (TPH), benzene, toluene, ethyl benzene and xylene (BTEX), polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs) and organophosphorous pesticides (OPPs). The soil stockpiles were observed to comprise disturbed topsoil, generally brown silty sand, underlain by yellow/ brown clay.

The location of the test pits and surface soil samples are shown in **Figure 3**. Test pit logs are included in **Appendix C**.

6.3 Soil Results

A summary of the soil results is presented in **Table 7**. Laboratory tables are included in **Appendix D** and laboratory reports are included in **Appendix E**.

Analyte	No. of Samples	Maximum Concentration (mg/kg)	No. exceeding Site Criteria	Criteria Exceeded (mg/kg)
Fluoride	5	6	0	-
Arsenic	4	<5	0	-
Cadmium	4	<1	0	-
Chromium	4	4	0	-
Copper	4	<5	0	-
Lead	4	15	0	-
Nickel	4	<2	0	-
Zinc	4	18	0	-
Mercury	4	<0.1	0	-
BaP	10	<0.5	0	-
BaP TEQ	10	<0.5	0	-
Total PAHs	10	<9	0	-
Benzene	10	<0.2	0	-
Toluene	10	<0.5	0	-
Ethyl benzene	10	<0.5	0	-
Xylene	10	<0.5	0	-
TRH C6-C10	10	<10	0	-
TRH >C10-C16	10	<50	0	-
TRH >C16-C34	10	<100	0	-
TRH >C34-C40	10	<100	0	
OCPs	4	<0.2	0	-
OPPs	4	<0.2	0	-
Asbestos	4	None	0	-

The results of surface soil sampling for fluoride demonstrate that surface soils at Parcel 8 have not been impacted by stack particulate fallout from the Hydro Aluminium Smelter.

The results of fill sampling indicate that stockpiled soil has not been impacted by heavy metals, TPH, BTEX, PAHs, OCPs, OPPs and asbestos.

6.4 Quality Assurance/ Quality Control

A quality assurance assessment for this report is presented in **Appendix F**. An assessment was made of data completeness, comparability, representativeness, precision and accuracy based on field and laboratory considerations, as outlined in NSW DEC (2006) and NSW EPA (2007) guidelines. Overall it is considered that the completed investigation works and the data are of suitable quality to meet the project objectives.

7 Site Characterisation

7.1 Conceptual Site Model

Parcel 8 consists of predominantly undisturbed bushland with a cleared area at the location of a former hobby farm. Parcel 8 is bounded by the Hunter Expressway on the south western boundary, Bishops Bridge Road on the eastern boundary and bushland on the northern boundary. Parcel 8 is located in the western portion of the Buffer Zone of the Hydro Aluminium Kurri Kurri Smelter.

The hobby farm was developed on the central portion (Lot 14) of Parcel 8 in the early 1950s. The hobby farm comprised three small buildings, which were demolished in the late 1980s. Remnant brick footings were identified in the cleared area during the site walkover. The remainder of Parcel 8 remained undeveloped bushland and no evidence of development was identified during the site walkover, aside from the dirt bike track at the location of the former hobby farm. The dirt bike track was constructed by a Hydro employee using soil from on site and it is no longer in use.

Numerous soil stockpiles were identified around the dirt bike track, most with grass growing over them. Intrusive investigations of these stockpiles indicate they comprised sandy fill similar to surrounding soils and were pushed up during the construction of the dirt bike track. The results of fill sampling indicate that stockpiled soil has not been impacted by heavy metals, TPH, BTEX, PAHs, OCPs, OPPs and asbestos.

The identification of an old, rusted car body on the south western boundary close to the Hunter Expressway and a small stockpile of dumped building waste, including tiles, house bricks, concrete pieces and ACM fragments, near the north eastern corner of Parcel 8 adjacent to Bishops Bridge Road, indicate that accessible areas of Parcel 8 are susceptible to illegal dumping. It is noted that the ACM fragments were not analysed for asbestos. However, based on the results of asbestos analysis of similar materials from other parcels in the Buffer Zone, the fragments are considered to contain asbestos.

Parcel 8 has not been affected by dust deposition of fluoride from the Hydro Aluminium Kurri Kurri Smelter, with fluoride concentrations in surface soils below the preliminary screening level for commercial/ industrial land use. It is noted that there is currently no source of aerial fluoride emissions, as the smelter is in a care and maintenance mode.

Concentrations of potential contaminants of concern were not identified at levels that are likely to impact on surface water or groundwater. No analysis of these media is warranted.

7.2 Waste Characterisation and Disposal

The ACM fragments observed in a small stockpile of building waste on Bishops Bridge Road classify as Asbestos Waste. The ACM fragments should be collected by an appropriately licenced contractor and appropriately managed or disposed. Other wastes should be disposed of or recycled where appropriate. Alternatively, planning permission could be sought for emplacement of the waste building materials in a containment cell within the Hydro site.

8 Conclusions and Recommendations

This report presents the findings of a Phase 2 Environmental Site Assessment undertaken on part of the Hydro Aluminium Kurri Kurri (Hydro) owned land known as Parcel 8. Parcel 8 is a rural property comprising approximately 54ha and is accessed from Bishops Bridge Road, Loxford and located within the buffer zone and to the west of the Hydro Aluminium Kurri Kurri Smelter.

Parcel 8 comprises bushland, with one area of disturbed land and limited tree cover in the centre of the parcel. A dirt bike racing track has been constructed in this cleared area.

In 2012, Hydro suspended operations at the Kurri Kurri Smelter and implemented care and maintenance until permanent site closure was announced in May 2014. Environmental investigations commenced at the time of suspension to assess site remediation requirements and the potential for land divestment. This work was undertaken in conjunction with the development of a Rezoning Masterplan, which identified possible end land use scenarios.

The objectives of this Phase 2 ESA assessment were to identify, review and report on the potential for contamination at Parcel 8 based on historical and current landuse and to assess the suitability of Parcel 8 for the proposed environmental conservation (E2) land use.

A Phase 1 ESA has previously been completed for the Hydro owned lands including Parcel 8 (ENVIRON (22 October 2013) Phase 1 ESA, Hydro Kurri Kurri Aluminium Smelter). The Phase 1 identified that contamination of Parcel 8 may have occurred from dust deposition due to the proximity of the Hydro smelter, illegal dumping due to the remoteness of the area, the former presence of a hobby farm and localised soil contamination from the use of a dirt bike track.

To assess for potential contaminants of concern on Parcel 8, a site walkover was completed and surface soil samples were collected from across the parcel. Surface soil samples were also collected from a number of soil stockpiles located around the dirt bike track.

Intrusive investigations into stockpiles associated with the dirt bike track identified disturbed topsoil underlain by yellow/brown clay. No waste materials and no contamination associated with heavy metals, petroleum hydrocarbons (TPH/BTEX), Polycyclic Aromatic Hydrocarbons (PAHs), Organochlorine Pesticides (OCPs), Organophsphorous Pesticides (OPPs) and asbestos were identified within the disturbed topsoil fill material.

An old car body and an area of illegally dumped asbestos containing materials (ACM) and other wastes including tile, house brick and concrete pieces, was identified adjacent to Bishops Bridge Road in the north eastern corner of Parcel 8. No other soil contamination issues were identified at Parcel 8.

Parcel 8 is considered suitable for the current landuse and the proposed environmental conservation (E2) landuse.

Hydro has separately engaged a NSW EPA-accredited Site Auditor to issue a Site Audit Statement certifying that the site is suitable for the proposed use.

21

ENVIRON considers that interim management is required to remove illegally dumped wastes and secure the site, as follows:

- An appropriately licensed asbestos removal contractor be engaged to remove and dispose of the asbestos waste. Validation of the area following removal should be undertaken by an appropriately qualified consultant and documented.
- For aesthetic reasons, the car body should be removed from the site and recycled as appropriate.

9 References

ANZECC & NHMRC (1992) Australian and New Zealand Guidelines for the Assessment and Management of Contaminated Sites;

ENVIRON (2013) Preliminary Screening Level, Health Risk Assessment for Fluoride and Aluminium, Part of the Kurri Kurri Aluminium Smelter, Hart Road, Loxford;

ENVIRON (2013) Phase 1 ESA, Hydro Kurri Kurri Aluminium Smelter;

Hunter Catchment Management Trust (2000) Wallis and Fishery Creeks Total Catchment Management Strategy;

NEPC (2013) National Environmental Protection (Assessment of Site Contamination) Amendment Measure (NEPM):

NSW DEC (2006) Guidelines for the NSW Site Auditor Scheme (Second Edition);

NSW DEC (2007) Guidelines for the Assessment and Management of Groundwater Contamination:

NSW DECC (2008) Waste Classification Guidelines.

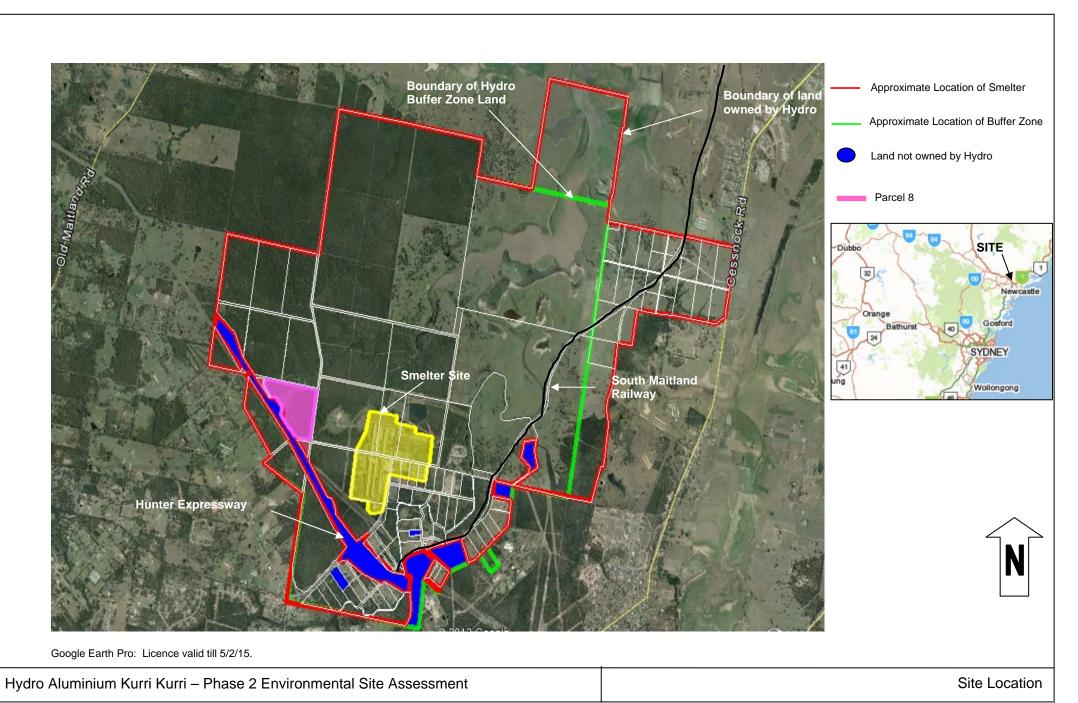
10 Limitations

ENVIRON Australia prepared this report in accordance with the scope of work as outlined in our proposal to Hydro Aluminium Kurri Kurri Pty Ltd dated 18 September 2013 and in accordance with our understanding and interpretation of current regulatory standards.

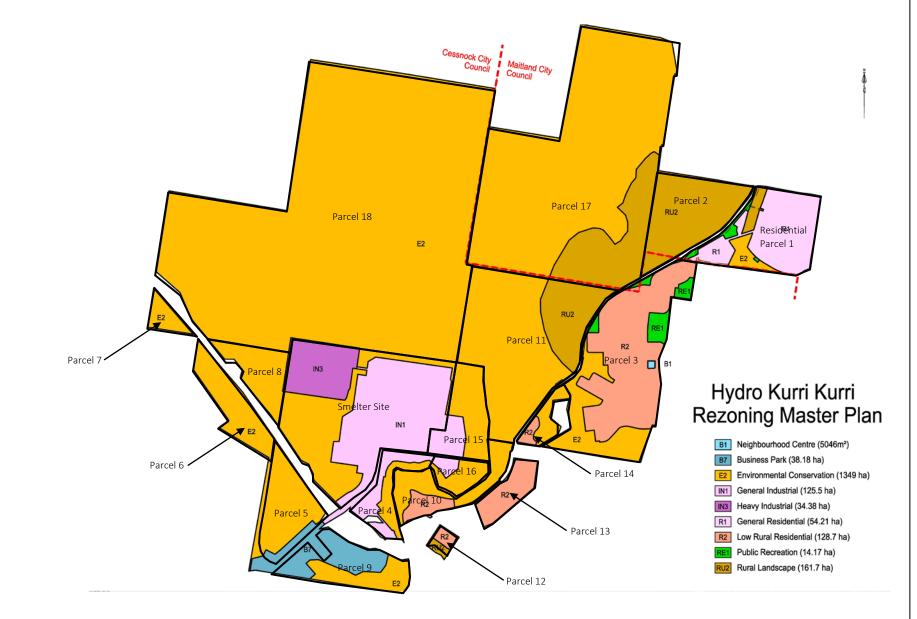
A representative program of sampling and laboratory analyses was undertaken as part of this investigation, based on past and present known uses of Parcel 8. While every care has been taken, concentrations of contaminants measured may not be representative of conditions between the locations sampled and investigated. We cannot therefore preclude the presence of materials that may be hazardous.

Site conditions may change over time. This report is based on conditions encountered at Parcel 8 at the time of the report and ENVIRON disclaims responsibility for any changes that may have occurred after this time.

The conclusions presented in this report represent ENVIRON's professional judgment based on information made available during the course of this assignment and are true and correct to the best of ENVIRON's knowledge as at the date of the assessment.


ENVIRON did not independently verify all of the written or oral information provided to ENVIRON during the course of this investigation. While ENVIRON has no reason to doubt the accuracy of the information provided to it, the report is complete and accurate only to the extent that the information provided to ENVIRON was itself complete and accurate.

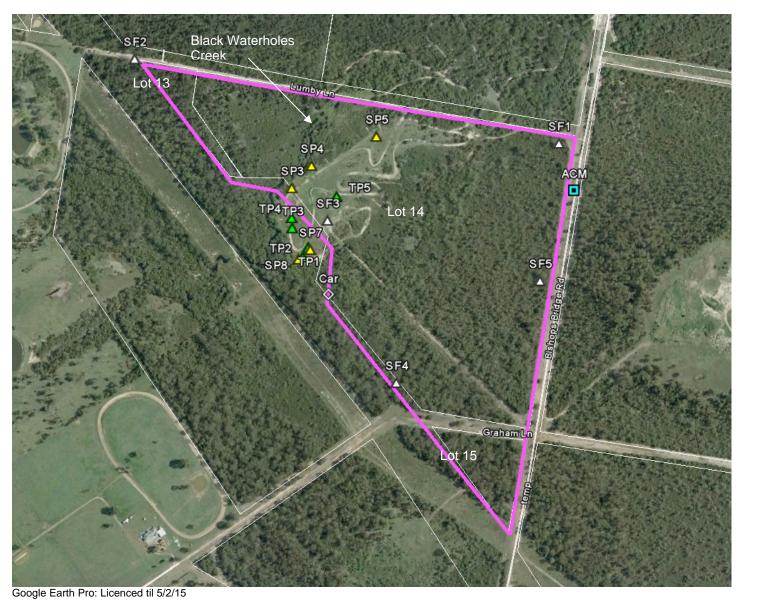
This report does not purport to give legal advice. This advice can only be given by qualified legal advisors.


10.1 User Reliance

This report has been prepared exclusively for Hydro Aluminium Kurri Kurri Pty Ltd and may not be relied upon by any other person or entity without ENVIRON's express written permission.

Figures

SENVIRON JOB NO: AS130348 DATE: February 2014 FIGURE 1


Proposed Land Zonings taken from Hydro Kurri Kurri Preliminary Masterplan dated 26/3/15

Hydro Aluminium Kurri Kurri – Phase 2 Buffer Zone investigations

Land Parcels and Proposed Land Zoning

JOB NO: AS 130348 DATE: March 2015 FIGURE 2

KEY:

Site Boundary

△ SF Soil Sample for Fluoride Analysis

△ SP Stockpile Sample

△ TP Test Pits

ACM ACM Stockpile

◇ Car body

Hydro Aluminium Kurri Kurri – Phase 2 Environmental Site Assessment

Parcel 8 – Soil Sampling Locations

SENVIRON

JOB NO: AS130348 DATE: April 2014 FIGURE 3

Appendix A

Surrounding Groundwater Bores

Registered groundwater bores in the vicinity of the site

Map created with NSW Natural Resource Atlas - http://www.nratlas.nsw.gov.au Tuesday, April 29, 2014 Wentworth swamps 0 24 Km Legend **Symbol** Layer Custodian Cities and large towns Populated places Towns Groundwater Bores Catchment Management Authority boundaries Major rivers M Primary/arterial road 🖊 Motorway/freeway [′] Railwaγ Topographic base map **∕∕** Runway

Copyright © 2014 New South Wales Government. Map has been compiled from various sources and may contain errors or omissions. No representation is made as to its accuracy or suitability.

Contour Background

Groundwater Works Summary

For information on the meaning of fields please see Glossary Document Generated on Monday, January 6, 2014

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079088

Works Details (top)

GROUNDWATER NUMBER GW079088

LIC-NUM

AUTHORISED-PURPOSES

INTENDED-PURPOSES MONITORING BORE

WORK-TYPE Bore

WORK-STATUS (Unknown)
CONSTRUCTION-METHOD (Unknown)
OWNER-TYPE (Unknown)

COMMENCE-DATE
COMPLETION-DATE
FINAL-DEPTH (metres)
DRILLED-DEPTH (metres)
CONTRACTOR-NAME

DRILLER-NAME

PROPERTY

GWMA

GW-ZONE

STANDING-WATER-LEVEL

SALINITY YIELD

Site Details (top)

REGION 20 - HUNTER

RIVER-BASIN AREA-DISTRICT

CMA-MAP
GRID-ZONE
SCALE
ELEVATION

ELEVATION-SOURCE

NORTHING 6371306.00 EASTING 358054.00 LATITUDE 32 47' 13" LONGITUDE 151 29' 3"

GS-MAP

AMG-ZONE 56
COORD-SOURCE
REMARK

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

For information on the meaning of fields please see Glossary Document Generated on Monday, January 6, 2014

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079090

Works Details (top)

GROUNDWATER NUMBER GW079090

LIC-NUM

AUTHORISED-PURPOSES

INTENDED-PURPOSES MONITORING BORE

WORK-TYPE Bore

WORK-STATUS (Unknown)
CONSTRUCTION-METHOD (Unknown)
OWNER-TYPE (Unknown)

COMMENCE-DATE
COMPLETION-DATE
FINAL-DEPTH (metres)
DRILLED-DEPTH (metres)
CONTRACTOR-NAME

DRILLER-NAME

PROPERTY

GWMA

GW-ZONE

STANDING-WATER-LEVEL

SALINITY

YIELD

Site Details (top)

REGION 20 - HUNTER

RIVER-BASIN AREA-DISTRICT

CMA-MAP
GRID-ZONE
SCALE
ELEVATION

ELEVATION-SOURCE

 NORTHING
 6371368.00

 EASTING
 358105.00

 LATITUDE
 32 47' 11"

 LONGITUDE
 151 29' 5"

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

For information on the meaning of fields please see Glossary Document Generated on Monday, January 6, 2014

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079092

Works Details (top)

GROUNDWATER NUMBER GW079092

LIC-NUM

AUTHORISED-PURPOSES

INTENDED-PURPOSES MONITORING BORE

WORK-TYPE Bore

WORK-STATUS (Unknown)
CONSTRUCTION-METHOD (Unknown)
OWNER-TYPE (Unknown)

COMMENCE-DATE
COMPLETION-DATE
FINAL-DEPTH (metres)
DRILLED-DEPTH (metres)
CONTRACTOR-NAME

DRILLER-NAME

PROPERTY

GWMA

GW-ZONE

STANDING-WATER-LEVEL

SALINITY YIELD

Site Details (top)

REGION 20 - HUNTER

RIVER-BASIN AREA-DISTRICT CMA-MAP

GRID-ZONE SCALE ELEVATION

ELEVATION-SOURCE

 NORTHING
 6371429.00

 EASTING
 358078.00

 LATITUDE
 32 47' 9"

 LONGITUDE
 151 29' 4"

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

For information on the meaning of fields please see Glossary Document Generated on Monday, January 6, 2014

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079093

Works Details (top)

GROUNDWATER NUMBER GW079093

LIC-NUM

AUTHORISED-PURPOSES

INTENDED-PURPOSES MONITORING BORE

WORK-TYPE Bore

WORK-STATUS (Unknown)
CONSTRUCTION-METHOD (Unknown)
OWNER-TYPE (Unknown)

COMMENCE-DATE
COMPLETION-DATE
FINAL-DEPTH (metres)
DRILLED-DEPTH (metres)
CONTRACTOR-NAME

DRILLER-NAME

PROPERTY

GWMA

GW-ZONE

STANDING-WATER-LEVEL

SALINITY

YIELD

Site Details (top)

REGION 20 - HUNTER

RIVER-BASIN AREA-DISTRICT

CMA-MAP
GRID-ZONE
SCALE
ELEVATION

ELEVATION-SOURCE

 NORTHING
 6371460.00

 EASTING
 358078.00

 LATITUDE
 32 47' 8"

 LONGITUDE
 151 29' 4"

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

For information on the meaning of fields please see Glossary Document Generated on Monday, January 6, 2014

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079094

Works Details (top)

GROUNDWATER NUMBER GW079094

LIC-NUM

AUTHORISED-PURPOSES

INTENDED-PURPOSES MONITORING BORE

WORK-TYPE Bore

WORK-STATUS (Unknown)
CONSTRUCTION-METHOD (Unknown)
OWNER-TYPE (Unknown)

COMMENCE-DATE
COMPLETION-DATE
FINAL-DEPTH (metres)
DRILLED-DEPTH (metres)
CONTRACTOR-NAME

DRILLER-NAME

PROPERTY

GWMA

GW-ZONE

STANDING-WATER-LEVEL

SALINITY YIELD

Site Details (top)

REGION 20 - HUNTER

RIVER-BASIN AREA-DISTRICT CMA-MAP

GRID-ZONE SCALE ELEVATION

ELEVATION-SOURCE

 NORTHING
 6371462.00

 EASTING
 358234.00

 LATITUDE
 32 47' 8"

 LONGITUDE
 151 29' 10"

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

For information on the meaning of fields please see Glossary Document Generated on Monday, January 6, 2014

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079096

Works Details (top)

GROUNDWATER NUMBER GW079096

LIC-NUM

AUTHORISED-PURPOSES

INTENDED-PURPOSES MONITORING BORE

WORK-TYPE Bore

WORK-STATUS (Unknown)
CONSTRUCTION-METHOD (Unknown)
OWNER-TYPE (Unknown)

COMMENCE-DATE
COMPLETION-DATE
FINAL-DEPTH (metres)
DRILLED-DEPTH (metres)
CONTRACTOR-NAME

DRILLER-NAME

PROPERTY

GWMA

GW-ZONE

STANDING-WATER-LEVEL

SALINITY YIELD

Site Details (top)

REGION 20 - HUNTER

RIVER-BASIN AREA-DISTRICT CMA-MAP

GRID-ZONE SCALE ELEVATION

ELEVATION-SOURCE

 NORTHING
 6371707.00

 EASTING
 358152.00

 LATITUDE
 32 47' 0"

 LONGITUDE
 151 29' 7"

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

For information on the meaning of fields please see Glossary Document Generated on Monday, January 6, 2014

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079097

Works Details (top)

GROUNDWATER NUMBER GW079097

LIC-NUM

AUTHORISED-PURPOSES

INTENDED-PURPOSES MONITORING BORE

WORK-TYPE Bore

WORK-STATUS (Unknown)
CONSTRUCTION-METHOD (Unknown)
OWNER-TYPE (Unknown)

COMMENCE-DATE
COMPLETION-DATE
FINAL-DEPTH (metres)
DRILLED-DEPTH (metres)
CONTRACTOR-NAME

DRILLER-NAME

PROPERTY

GWMA

GW-ZONE

STANDING-WATER-LEVEL

SALINITY YIELD

Site Details (top)

REGION 20 - HUNTER

RIVER-BASIN AREA-DISTRICT

CMA-MAP
GRID-ZONE
SCALE
ELEVATION

ELEVATION-SOURCE

 NORTHING
 6371679.00

 EASTING
 358335.00

 LATITUDE
 32 47' 1"

 LONGITUDE
 151 29' 14"

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

For information on the meaning of fields please see Glossary Document Generated on Monday, January 6, 2014

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079099

Works Details (top)

GROUNDWATER NUMBER GW079099

LIC-NUM

AUTHORISED-PURPOSES

INTENDED-PURPOSES

WORK-TYPE Bore

WORK-STATUS (Unknown)

CONSTRUCTION-METHOD (Unknown)

OWNER-TYPE (Unknown)

COMMENCE-DATE

COMPLETION-DATE

FINAL-DEPTH (metres)

DRILLED-DEPTH (metres)

CONTRACTOR-NAME

DRILLER-NAME

PROPERTY

GWMA

GW-ZONE

STANDING-WATER-LEVEL

SALINITY

YIELD

Site Details (top)

REGION 20 - HUNTER

RIVER-BASIN

AREA-DISTRICT

CMA-MAP

GRID-ZONE

SCALE

ELEVATION

ELEVATION-SOURCE

NORTHING 6371003.00 EASTING 358448.00 LATITUDE 32 47' 23" LONGITUDE 151 29' 18"

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Monday, January 6, 2014

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079101

Works Details (top)

GROUNDWATER NUMBER GW079101

LIC-NUM

AUTHORISED-PURPOSES

INTENDED-PURPOSES

WORK-TYPE Bore

WORK-STATUS (Unknown)

CONSTRUCTION-METHOD (Unknown)

OWNER-TYPE (Unknown)

COMMENCE-DATE

COMPLETION-DATE

FINAL-DEPTH (metres)

DRILLED-DEPTH (metres)

CONTRACTOR-NAME

DRILLER-NAME

PROPERTY

GWMA

GW-ZONE

STANDING-WATER-LEVEL

SALINITY

YIELD

Site Details (top)

REGION 20 - HUNTER

RIVER-BASIN

AREA-DISTRICT

CMA-MAP

GRID-ZONE

SCALE

ELEVATION

ELEVATION-SOURCE

NORTHING 6371680.00 EASTING 358387.00 LATITUDE 32 47' 1" LONGITUDE 151 29' 16"

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

For information on the meaning of fields please see Glossary Document Generated on Monday, January 6, 2014

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079102

Works Details (top)

GROUNDWATER NUMBER GW079102

LIC-NUM

AUTHORISED-PURPOSES

INTENDED-PURPOSES

WORK-TYPE Bore

WORK-STATUS (Unknown) **CONSTRUCTION-METHOD** (Unknown)

OWNER-TYPE (Unknown)

COMMENCE-DATE

COMPLETION-DATE

FINAL-DEPTH (metres)

DRILLED-DEPTH (metres)

CONTRACTOR-NAME

DRILLER-NAME

PROPERTY

GWMA

GW-ZONE

STANDING-WATER-LEVEL

SALINITY

YIELD

Site Details (top)

REGION 20 - HUNTER

RIVER-BASIN

AREA-DISTRICT

CMA-MAP

GRID-ZONE

SCALE

ELEVATION

ELEVATION-SOURCE

NORTHING 6371685.00 **EASTING** 358725.00 **LATITUDE** 32 47' 1" 151 29' 29" LONGITUDE

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Monday, January 6, 2014

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079103

Works Details (top)

GROUNDWATER NUMBER GW079103

LIC-NUM

AUTHORISED-PURPOSES

INTENDED-PURPOSES

WORK-TYPE Bore

WORK-STATUS (Unknown)

CONSTRUCTION-METHOD (Unknown)

OWNER-TYPE (Unknown)

COMMENCE-DATE

COMPLETION-DATE

FINAL-DEPTH (metres)

DRILLED-DEPTH (metres)

CONTRACTOR-NAME

DRILLER-NAME

PROPERTY

GWMA

GW-ZONE

STANDING-WATER-LEVEL

SALINITY

YIELD

Site Details (top)

REGION 20 - HUNTER

RIVER-BASIN

AREA-DISTRICT

CMA-MAP

GRID-ZONE

SCALE

ELEVATION

ELEVATION-SOURCE

NORTHING 6371530.00 EASTING 358675.00 LATITUDE 32 47' 6" LONGITUDE 151 29' 27"

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Appendix B
Site Photographs

Photo 1: Photograph of the cleared area at the location of the former hobby farm on Lot 14.

Photo 2: Photograph of the remnant footing on Lot 14.

Title:	Phase 2 ESA	Approved:	Project-Nr.:	Date:	
Site:	Parcel 8	KG	AS130348	13/02/14	
Client:	Hydro Aluminium Kurri Kurri		C El	NVIRON	

Photo 3: Photograph of grassed soil stockpiles near the dirt bike track on Lot 14.

Photo 4: Photograph of hummocky ground near the dirt bike track on Lot 14.

Title:	Phase 2 ESA	Approved:	Project-Nr.:	Date:
Site:	Parcel 8	KG	AS130348	13/02/14
Client:	Hydro Aluminium Kurri Kurri		C El	NVIRON

Photo 5: Photograph of building waste, including ACM fragments, near Bishops Bridge Road.

Title:	Phase 2 ESA	Approved:	Project-Nr.: Date:		
Site:	Parcel 8	KG	AS130348	13/02/14	
Client:	Hydro Aluminium Kurri Kurri		S EI	NVIRON	

Appendix C

Field Investigation Sheets and test pit logs

TEST PIT NUMBER TP1

BOREHOLE / TEST PIT AS130348 PARCEL 8 LOT 14.GPJ GINT STD AUSTRALIA.GDT 29/4/14

N IEN			IRC		DDO JECT NAME DIS	aaa 2 Environma	untal Cita Assassment		
		rdro Alum UMBER _				PROJECT NAME Phase 2 Environmental Site Assessment PROJECT LOCATION Parcel 8, Lot 14			
DATE EXCA	STAR ⁻ /ATIO	TED <u>19/</u>	3/14 ACTOR	COMPLETED _19/3/14	R.L. SURFACE	R.L. SURFACE			
	PIT SIZ								
Water		Depth (m)	Classification Symbol	Material Desc	ription	Samples Tests Remarks	Additional Observations		
		0.5		FILL; Silty SAND, brown, fine grained, moist Silty SAND; brown	(disturbed topsoil)				
		1.0		CLAY; red brown, medium-high plasticity					
		1.5 							

TEST PIT NUMBER TP2

C	ENVIRON
CLIENT	Hvdro Aluminium Kurri Kurri

BOREHOLE / TEST PIT AS130348 PARCEL 8 LOT 14.GPJ GINT STD AUSTRALIA.GDT 29/4/14

OJE	CT N	JMBE	R _A	S1303	48	_ PROJECT LOCATION	Parcel 8, Lot 1	4
DATE STARTED _19/3/14 COMPLETED _19/3/14 EXCAVATION CONTRACTOR _								
TES		<u> </u>				_ LOGGED BY SC		CHECKED BY KG
ILG								
Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descrip	tion	Samples Tests Remarks	Additional Observations
		_			FILL; Silty SAND, light brown, fine grained with (trace).	clay lumps, wood fragments		
		_			(udoo).			
		-						
		0.5						
		_						
		-			TOPSOIL			
		-			CLAY; yellow-brown, medium plasticity			
		1.0						
		_						
		-						
					Borehole TP2 terminated at 1.3m			
		1. <u>5</u>	-					
		-	-					
		_						
			-					
		2.0	-					
		_						
		_	-					
		2 <u>.5</u>	-					
		2.5	-					
		_						
		-						
		3 <u>.0</u>	-					
		_						
		-	-					
		-	-					
		3.5						
		-	-					
		-	-					
		_						
		4 <u>.0</u>	-					
		-						
		-						
		_						
		4 <u>.5</u>						
		-						
		_						
			1					

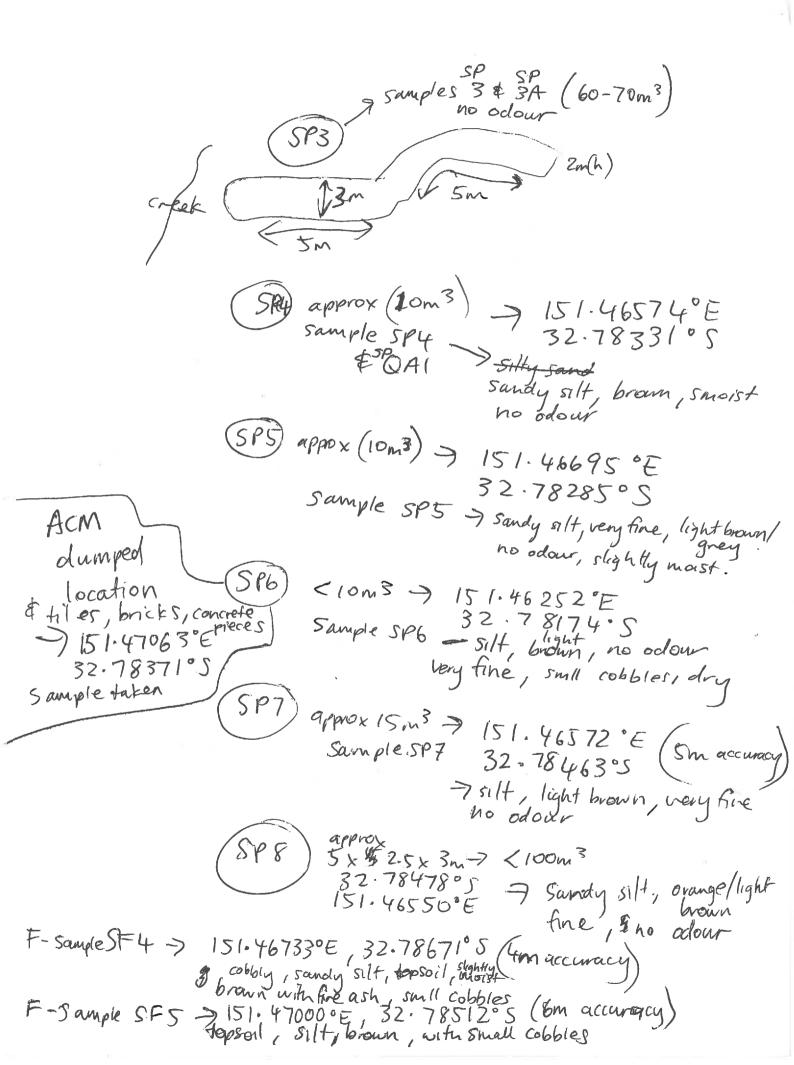
TEST PIT NUMBER TP3 PAGE 1 OF 1

📢 ENVIRON	1
-----------	---

CL	.IENT	Г _Ну	dro Alumin	ium Ku	ırri Kurri					
PR	ROJE	CT N	UMBER _A	\S1303	348	PROJECT LOCATION	Parcel 8, Lot 14	4		
DATE STARTED 19/3/14 COMPLETED 19/3/14										
l										
			ZE			LOGGED BY SC		CHECKED BY KG		
NC	TES	<u> </u>		1						
Method	Water	RL (m)	(m) (t) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	Classification Symbol	Material Desc	cription	Samples Tests Remarks	Additional Observations		
W	M	(m)	1.5 		FILL; Silty SAND Borehole TP3 terminated at 1m	ed natural)				

TEST PIT NUMBER TP4

PAGE 1 OF 1


C	ENVIRON
CLIENT	Hydro Aluminium Kurri Kurri

PROJECT NUMBER AS130348 DATE STAPTED 19/3/14 COMPLETED 19/3/14						D	PROJECT LOCATION Parcel 8, Lot 1		
DATE STARTED 19/3/14 COMPLETED 19/3/14 EXCAVATION CONTRACTOR									
	OTES								
Method	Water	RL (m)	(w) htded Graphic Log	Classification Symbol	Material Desc	•	Samples Tests Remarks	Additional Observations	
			1. <u>0</u> 1. <u>5</u> 2. <u>0</u> 3. <u>5</u> 4. <u>0</u> 4. <u>5</u>		FILL; Sity SAND and clay lumps (undisturbed TOPSOIL; Sitty SAND) CLAY; yellow-brown, medium plasticity Borehole TP4 terminated at 0.9m	rd natural)			

1	3	E	N'	VI	RC)N		TES	T PIT NUMBER TI PAGE 1 O
CLI	IENT	Г _Ну	dro Al	umini	um Ku	rri Kurri	PROJECT NAME	E Phase 2 Environme	ental Site Assessment
PR	OJE	CT N	UMBE	R _A	S1303	48	PROJECT LOCA	ATION Parcel 8, Lot 1	4
DA	TE S	STAR	TED _	19/3/	14	COMPLETED 19/3/14	R.L. SURFACE		DATUM
	ST P TES		ZE				LOGGED BY _SO	;	CHECKED BY KG
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Des	scription	Samples Tests Remarks	Additional Observations
						FILL; Silty SAND and clay lumps (undisturb	ed natural)		
			0.5						
						CLAY			
			1.0			Borehole TP5 terminated at 1m			
			-						
			1 <u>.5</u>						
			-						
			2.0						
			-						
			2 <u>.5</u>						
			-						
			3.0						
			-						
			3 <u>.5</u>						
			-						
			4.0						
			4.5						
			5.0						

Site Walkover Checklist

37	Project No.: Ag 1	20.21.0	Date and Time: ////	7.5						
	Land Parcel: /7 /	30548	1/11	/ (3						
	EU	8 6+14	341119	warn partially						
	Lot and DP: Lot	14	Environ Personnel: Kw	& Glen (Hydro)						
	Mara and a second									
	Topography									
	Surface Geology		es st in hi	ke trail area						
	Fill evident?	stockpiles ne	ar creek & alon	g five trails in push						
	Hummocky ground?	yes around bike trail area								
	Structures on site?	bike trail								
	Location of structures as per historical aerials - former structures now clear bike trail area - all humanocky									
	Building materials used in structures		9							
	Asbestos debris on site?	Not sighted								
	Location of asbestos debris?	_								
	Volume of asbestos debris?			11 01 -1 / 0						
They gre	uphizold car body		8 5 , 151.4660	5°E & 151.46773°E						
v	Tel Marie Marie			32.19.111 3						
	Point of Interest Small Stock pile	(Olold avussoner	Easting ed 151.46975°F	82.78719°5 Gm						
(Stockpiles N along B		151.46995	32.78719°S 6m accuracy						
bush	travelling -)	151.47011 €	32.78564						
Hackpiles		chale(2)	151-47037	32.782980						
	and declarated	anniques	1.46946°E, 32	·78720°5						
	Old Stockpile (soil		. 46653 . 32	· 78173 ° C						
	21		10033							
	ble trail cleanh		-> 151.46537 E	, 32 78366° (Pro						
		# Stockpild 4 (10m3) San	Sp3A 7	11,1000000						
bush stackpile			070 Wso. bush steeleps	151.465 70 E 1151.4670						
	Small bush stoc	Epiles in vicinity	7 151-46713°E, 32-7							
11	Small dist sto			ong Esik bowdany						
	F sample - SFI	-> 151, 47036°E	, 32-78296°S -> Sil	ty clay, orange brown						
		yed point on clea		15 - with small cobbies						
	Inear old brick.	() ()	51.46	602°E, 32.78 (23°S						
	<u> </u>			cemacy						
	F Sample - SF2	32.78/68°S	I topsoil, keny fine	silt, light brown, dry						
	F Sample SF3	7 151.46604°E	JMII COBBIES.	1) //						
	\\auhunfp1\Shared_Files\Projects\F	32.78417°5 Hydro Australia\Site Walkover Checklst.do		51/t, orange/brown						
				ENVIRON						

Appendix D

Results Tables

TABLE A: Soil Analytical Results - Grid Sampling

Sample Depth: 0.0m - 0.01m Sampling Date: 1/11/13 Laboratory PQL: 5 mg/kg

Site Specific HIL - Fluoride: 17000mg/kg

Sample Identification	Soluble Fluoride mg/kg (1:5 soil:water)
S1	<5
S2	2
S3	<2
S4	6
S5	5

TABLE B: Soil Analytical Results - Infill Areas

Sample Identification			G	uideline			SP3	SP4	SP5	SP7	SP8	P8 TP1	P8 TP2	P8 TP3	P8 TP5
Sample Depth (m)				I I			U . U	<u> </u>	0.0	<u> </u>	<u> </u>	0.2-0.5	0.2-0.5	0.2-0.5	0.1-0.3
Date	PQL	HIL 'D' ^A	HSL 'D' Silt 0m to 1m	EIL Industrial	ESL Industrial (Coarse Soil)	Mgt Limits Industrial	1/11/2013	1/11/2013	1/11/2013	1/11/2013	1/11/2013	19/03/2014	19/03/2014	19/03/2014	19/03/2014
Commis Drofile							FILL	FILL	FILL	FILL	FILL	- Fu	FILL	FILL	FILL
Sample Profile					KW	KW	KW	KW	FILL KW	FILL SC	SC	SC	SC		
Sample collected by							I NVV	INVV	KVV	KVV	IVV	30	30	30	30
Asbestos															
Asbestos Identification							_	-	-	-	-	No	No	No	No
Heavy Metals			l	<u> </u>								.,,	110	.,,,	1,10
Arsenic	5	3000	l			1	-	-	-	-	-	<5	<5	<5	<5
Cadmium	1	900					-	-	-	-	-	<1	<1	<1	<1
Chromium	1	3600					-	-	-	-	-	2	4	2	4
Copper	5	240,000					-	-	-	-	-	<5	<5	<5	<5
Lead	5	1500					-	-	-	-	-	6	15	7	8
Nickel	2	6000					-	-	-	-	-	<2	<2	<2	<2
Zinc	2	400,000					-	-	-	-	-	12	9	14	18
Mercury	0.1	730					-	-	-	-	-	<0.1	<0.1	<0.1	<0.1
Polycyclic Aromatic Hydroca	rbons (PA	H)													
Naphthalene	0.1			370			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	0.1						<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	0.1						<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	0.1						<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	0.1						<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Anthracene	0.1						<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	0.1						<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Pyrene	0.1						<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benz(a)anthracene	0.1						<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chrysene	0.1						<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b)&(k)fluoranthene	0.2				0.7		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a) pyrene	0.05 0.1				0.7		<0.5 <0.5								
Indeno(1,2,3-c,d)pyrene Dibenz(a,h)anthracene	0.1						<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g,h,i)perylene	0.1						<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ	0.1	40					<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve		4000					<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Total Recoverable Hydrocarb)13)	<u> </u>			۷٥.٥	νο.σ							
TRH C6 - C10	25		250		215	700	<25	<25	<25	<25	<25	<25	<25	<25	<25
vTPH C6 - C10 less BTEX	25		NL		-	-	<25	<25	<25	<25	<25	<25	<25	<25	<25
TRH >C10-C16	50		NL		170	1000	<50	<50	<50	<50	<50	<50	<50	<50	<50
				 											
TRH >C16-C34	100		NL NI		1700	3500	<100	<100	<100	<100	<100	<100	<100	<100	<100
TRH >C34-C40	100		NL		3300	10000	<100	<100	<100	<100	<100	<100	<100	<100	<100
BTEX															
Benzene	0.2		4		75		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	0.5		NL		135		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	1		NL	İ	165		<1	<1	<1	<1	<1	<1	<1	<1	<1
m+p-xylene	2		NL		180		<2	<2	<2	<2	<2	<2	<2	<2	<2
o-Xylene	1		NL		180		<1	<1	<1	<1	<1	<1	<1	<1	<1
O Aylollo	<u> </u>		INL	l l	100	l .	<u> </u>	<u> </u>	<u> </u>		_ ` '	<u> </u>	<u> </u>	<u> </u>	

All results are in mg/kg

Benzo(a)pyrene TEQ is indicative of carcinogenic PAHs: the HIL is based on the 8 carcinogenic PAHs and their TEFs (potency relative to B(a)P) adopted by CCME 2008. The B(a)P TEQ is calculated by multiplying the concentration of each carcinogenic PAH in the sample by its B(a)P TEF and sumr

AHIL D - Commercial/ Industrial landuse

^D EILs represent the most conservative value possible as the lowest value for added contaminant limit (ACL) was used, irrespective of soil properties and ambient background concentration. Results shaded grey are in excess of the investigation criteria.

TABLE B: Soil Analytical Results - Infill Areas

Sample Identification		Guideline					
Sample Depth (m)					ESL		
Date	PQL	HIL 'D' ^A	HSL 'D' Silt 0m to 1m	EIL Industrial			

Sample Profile					
Sample collected by					
Sample collected by					
Asbestos					
Asbestos Identification					
Heavy Metals	•				
Arsenic	5	3000			
Cadmium	1	900			
Chromium	1	3600			
Copper	5	240,000			
Lead	5	1500			
Nickel	2	6000			
Zinc	2	400,000			
Mercury	0.1	730			1
Polycyclic Aromatic Hydroca Naphthalene	0.1	п)	1	370	1
Acenaphthylene	0.1			370	†
Acenaphthene	0.1				
Fluorene	0.1		-		
Phenanthrene	0.1				
Anthracene	0.1				
Fluoranthene	0.1				
Pyrene	0.1				
Benz(a)anthracene	0.1				
Chrysene	0.1				
Benzo(b)&(k)fluoranthene	0.2				
Benzo(a) pyrene	0.05				0.7
Indeno(1,2,3-c,d)pyrene	0.1				
Dibenz(a,h)anthracene	0.1				
Benzo(g,h,i)perylene	0.1	40			
Benzo(a)pyrene TEQ Total +ve	0.5	40 4000			
Total Recoverable Hydrocark			112\		1
TRH C6 - C10	25) - IVLI IVI (20	250		215
vTPH C6 - C10 less BTEX	25		NL		
TRH >C10-C16	50		NL		170
TRH >C10-C16	100		NL NL		1700
TRH >C34-C40	100		NL NL		3300
BTEX	100		INL		3300
			, 1		7-
Benzene	0.2		4		75
Toluene	0.5		NL		135
Ethylbenzene	1		NL		165
m+p-xylene	2		NL		180
o-Xylene	1		NL		180

All results are in mg/kg

Benzo(a)pyrene TEQ is indicative of carcinogenic PAHs: the HIL is based on the 8 carcinogenic PAHs and their TEFsning these products.

^AHIL D - Commercial/ Industrial landuse

^D EILs represent the most conservative value possible as the lowest value for added contaminant limit (ACL) was use Results shaded grey are in excess of the investigation criteria.

TABLE C: Soil Quality Assu	rance/ Quality	Control Resu	lts
Sample Identification	SP4	SPQA1	
Sample Depth (m)	Fill soi	l matrix	
Duplicate Type	Intralat	ooratory	RPD %
Sample Profile	TOP	SOIL	1
Sample collected by	K	W	
Polycyclic Aromatic Hydrocar	bons (PAH)		
Naphthalene	<0.5	<0.5	NC
Acenaphthylene	<0.5	<0.5	NC
Acenaphthene	<0.5	<0.5	NC
Fluorene	<0.5	<0.5	NC
Phenanthrene	<0.5	<0.5	NC
Anthracene	<0.5	<0.5	NC
Fluoranthene	<0.5	<0.5	NC
Pyrene	<0.5	<0.5	NC
Benz(a)anthracene	<0.5	<0.5	NC
Chrysene	<0.5	<0.5	NC
Benzo(b)&(k)fluoranthene	<0.5	<0.5	NC
Benzo(a) pyrene	<0.5	<0.5	NC
Indeno(1,2,3-c,d)pyrene	<0.5	<0.5	NC
Dibenz(a,h)anthracene	<0.5	<0.5	NC
Benzo(g,h,i)perylene	<0.5	<0.5	NC
Benzo(a)pyrene TEQ	<0.5	<0.5	NC
Total +ve	<0.5	<0.5	NC
Total Recoverable Hydrocarb	ons (TRH) - NEP	VI (2013)	
TRH C6 - C10	<25	<25	NC
vTPH C6 - C10 less BTEX	<25	<25	NC
TRH >C10-C16	<50	<50	NC
TRH >C16-C34	<100	<100	NC
TRH >C34-C40	<100	<100	NC
BTEX			
Benzene	<0.2	<0.2	NC
Toluene	<0.5	<0.5	NC
Ethylbenzene	<1	<1	NC
m+p-xylene	<2	<2	NC
o-Xylene	<1	<1	NC

Note all units in mg/kg

BOLD identifies where RPD results

intralaboratory	interlaboratory	_
>50	>60	where both sample results exceed ten x PQL
>75	>85	where both sample results are within 5 to 10 x PQL
>100	>100	where both sample results are within 2 to 5 x PQL
AD>2.5 * PQL		where one or both sample results are <2 x PQL

BOLD identified where blanks >0

Where results are within two of the above ranges the most conservative criteria have been used to assess duplicate performance

Appendix E

Laboratory Reports

CERTIFICATE OF ANALYSIS

Work Order : **ES1323785** Page : 1 of 8

Client : ENVIRON AUSTRALIA PTY LTD Laboratory : Environmental Division Sydney

Contact : MR STEVE CADMAN Contact : Client Services

Address : PO BOX 560 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

NORTH SYDNEY NSW. AUSTRALIA 2060

Facsimile : +61-2-8784 8500

Project : AS130348 QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

C-O-C number : ---- Date Samples Received : 04-NOV-2013

Sampler : KW Issue Date : 11-NOV-2013
Site : ----

No. of samples received : 14

Quote number : SY/446/12 No. of samples analysed : 11

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Order number

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ashesh Patel	Inorganic Chemist	Sydney Inorganics
Celine Conceicao	Senior Spectroscopist	Sydney Inorganics
Pabi Subba	Senior Organic Chemist	Sydney Organics

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

Page : 2 of 8
Work Order : ES1323785

Client : ENVIRON AUSTRALIA PTY LTD

Project : AS130348

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

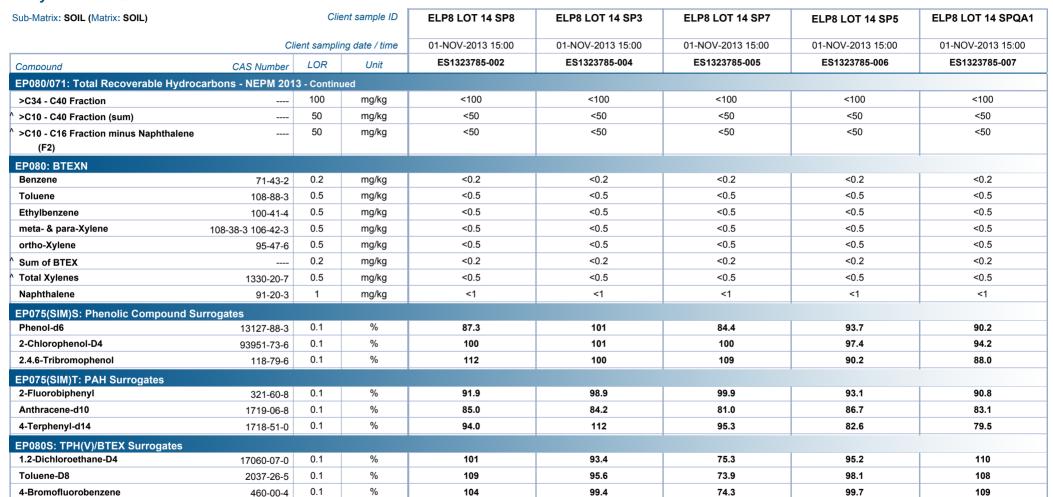

^ = This result is computed from individual analyte detections at or above the level of reporting

- EA200 Legend
- EA200 'Am' Amosite (brown asbestos)
- EA200 'Ch' Chrysotile (white asbestos)
- EA200 'Cr' Crocidolite (blue asbestos)
- EA200 'Trace' Asbestos fibres detected by trace analysis per AS4964. The result can be interpreted that the sample contains detectable 'respirable' asbestos fibres
- EA200: 'UMF' Unknown Mineral Fibres. "-" indicates fibres detected may or may not be asbestos fibres. Confirmation by alternative techniques is recommended.
- EA200: Asbestos Identification Samples were analysed by Polarised Light Microscopy including dispersion staining.
- EA200: Negative results for vinyl tiles should be confirmed by an independent analytical technique.

Page : 3 of 8
Work Order : ES1323785

Client : ENVIRON AUSTRALIA PTY LTD

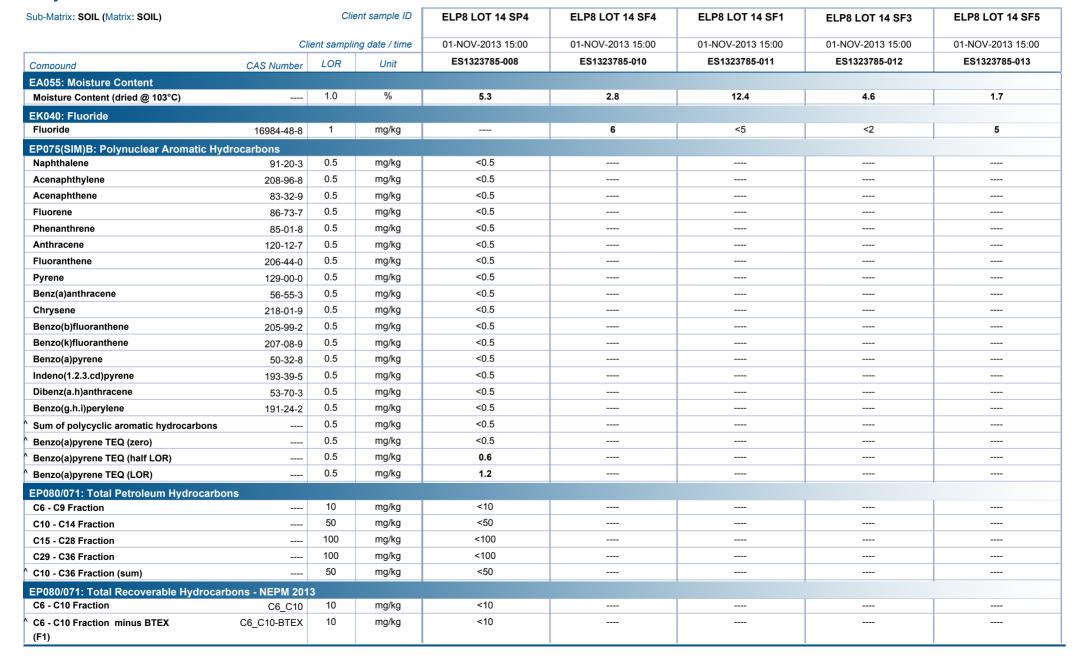
Project · AS130348



Page : 4 of 8 Work Order : ES1323785

Client : ENVIRON AUSTRALIA PTY LTD

Project : AS130348



Page : 5 of 8 Work Order : ES1323785

Client : ENVIRON AUSTRALIA PTY LTD

Project · AS130348

Page : 6 of 8 Work Order : ES1323785

Client : ENVIRON AUSTRALIA PTY LTD

Project : AS130348

Page : 7 of 8
Work Order : ES1323785

Client : ENVIRON AUSTRALIA PTY LTD

Project : AS130348

ALS

Sub-Matrix: SOIL (Matrix: SOIL)	Client sample ID			ELP8 LOT 14 SF2	 	
	ient sampli	ng date / time	01-NOV-2013 15:00	 	 	
Compound	CAS Number	LOR	Unit	ES1323785-014	 	
EA055: Moisture Content						
Moisture Content (dried @ 103°C)		1.0	%	1.5	 	
EK040: Fluoride						
Fluoride	16984-48-8	1	mg/kg	2	 	

Page : 8 of 8 Work Order : ES1323785

Client : ENVIRON AUSTRALIA PTY LTD

Project : AS130348

Surrogate Control Limits

Sub-Matrix: SOIL		Recover	y Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound Surro	gates		
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	72.8	133.2
Toluene-D8	2037-26-5	73.9	132.1
4-Bromofluorobenzene	460-00-4	71.6	130.0

QUALITY CONTROL REPORT

Work Order : **ES1323785** Page : 1 of 7

Client : ENVIRON AUSTRALIA PTY LTD Laboratory : Environmental Division Sydney

Contact : MR STEVE CADMAN Contact : Client Services

Address : PO BOX 560 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

NORTH SYDNEY NSW, AUSTRALIA 2060

Telephone : +61 02 99548114 Telephone : +61-2-8784 8555

Facsimile : +61-2-8784 8500

Project : AS130348 QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

C-O-C number : ---- Date Samples Received : 04-NOV-2013

Sampler : KW Issue Date : 11-NOV-2013
Order number : ----

No. of samples received : 14

Quote number : SY/446/12 No. of samples analysed : 11

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Site

ted

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ashesh PatelInorganic ChemistSydney InorganicsCeline ConceicaoSenior SpectroscopistSydney InorganicsPabi SubbaSenior Organic ChemistSydney Organics

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500 |
Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group | An ALS Limited Company

Page : 2 of 7

Work Order : ES1323785

Client : ENVIRON AUSTRALIA PTY LTD

Project : AS130348

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Page : 3 of 7

Work Order : ES1323785

Client : ENVIRON AUSTRALIA PTY LTD

Project : AS130348

ALS

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: SOIL						Laboratory I			
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA055: Moisture Co	ontent (QC Lot: 3147356)								
ES1323625-010	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	25.4	23.8	6.6	0% - 20%
ES1323785-008	ELP8 LOT 14 SP4	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	5.3	6.0	12.3	No Limit
EK040S: Fluoride S	oluble (QC Lot: 3144606)								
ES1323625-008	Anonymous	EK040S: Fluoride	16984-48-8	1	mg/kg	6	6	0.0	No Limit
ES1323784-005	Anonymous	EK040S: Fluoride	16984-48-8	1	mg/kg	4	4	0.0	No Limit
EP075(SIM)B: Polyr	uclear Aromatic Hydroca	rbons (QC Lot: 3143842)							
ES1323785-002	ELP8 LOT 14 SP8	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
EP080/071: Total Pe	troleum Hydrocarbons (0	QC Lot: 3143841)							
ES1323785-002	ELP8 LOT 14 SP8	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Pe	troleum Hydrocarbons(C	QC Lot: 3145986)							
ES1323785-002	ELP8 LOT 14 SP8	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
ES1324094-004	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Re	coverable Hydrocarbons	- NEPM 2013 (QC Lot: 3143841)							
ES1323785-002	ELP8 LOT 14 SP8	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
ı	T.					1			1

Page : 4 of 7
Work Order : ES1323785

Client : ENVIRON AUSTRALIA PTY LTD

Project : AS130348

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080/071: Total Re	ecoverable Hydrocarbon	s - NEPM 2013 (QC Lot: 3143841) - continued							
ES1323785-002	ELP8 LOT 14 SP8	EP071: >C10 - C16 Fraction	>C10_C16	50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Re	ecoverable Hydrocarbon	s - NEPM 2013 (QC Lot: 3145986)							
ES1323785-002	ELP8 LOT 14 SP8	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
ES1324094-004	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
EP080: BTEXN (QC	Lot: 3145986)								
ES1323785-002	ELP8 LOT 14 SP8	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
ES1324094-004	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit

Page : 5 of 7

Work Order : ES1323785

Client : ENVIRON AUSTRALIA PTY LTD

Project : AS130348

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EK040S: Fluoride Soluble (QCLot: 3144606)								
EK040S: Fluoride	16984-48-8	1.0	mg/kg	<1	25.0 mg/kg	116	69	117
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot:	3143842)							
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	4 mg/kg	101	80	124
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	4 mg/kg	94.3	77	123
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	4 mg/kg	96.3	79	123
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	4 mg/kg	92.8	77	123
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	4 mg/kg	96.5	79	123
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	4 mg/kg	95.3	79	123
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	4 mg/kg	93.6	79	123
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	4 mg/kg	94.8	79	125
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	4 mg/kg	93.4	73	121
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	4 mg/kg	95.1	81	123
EP075(SIM): Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5	4 mg/kg	82.6	70	118
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	4 mg/kg	86.8	77	123
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	4 mg/kg	95.4	76	122
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	4 mg/kg	84.1	71	113
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	4 mg/kg	88.3	71.7	113
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	4 mg/kg	86.0	72.4	114
EP080/071: Total Petroleum Hydrocarbons (QCLot: 3143841)							
EP071: C10 - C14 Fraction		50	mg/kg	<50	200 mg/kg	93.9	71	131
EP071: C15 - C28 Fraction		100	mg/kg	<100	300 mg/kg	91.3	74	138
EP071: C29 - C36 Fraction		100	mg/kg	<100	200 mg/kg	84.9	64	128
EP080/071: Total Petroleum Hydrocarbons (QCLot: 3145986)							
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	84.1	68.4	128
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 (QCLot: 31438	41)						
EP071: >C10 - C16 Fraction	>C10_C16	50	mg/kg	<50	250 mg/kg	96.1	70	130
EP071: >C16 - C34 Fraction		100	mg/kg	<100	350 mg/kg	87.6	74	138
EP071: >C34 - C40 Fraction		100	mg/kg	<100				
		50	mg/kg		150 mg/kg	76.1	63	131
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 (QCLot: 31459	86)						
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	87.6	68.4	128
EP080: BTEXN (QCLot: 3145986)								
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	82.1	62	116
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	76.9	62	128
			J J		J J		-	1

Page : 6 of 7

Work Order : ES1323785

Client : ENVIRON AUSTRALIA PTY LTD

Project : AS130348

Sub-Matrix: SOIL	Method Blank (MB) Laboratory Control Spike (LCS) Report							
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080: BTEXN (QCLot: 3145986) - continued								
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	91.2	58	118
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	87.7	60	120
	106-42-3							
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	93.6	60	120
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	94.7	62	138

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	.imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EK040S: Fluoride	Soluble (QCLot: 3144606)						
ES1323625-008	Anonymous	EK040S: Fluoride	16984-48-8	50 mg/kg	108	70	130
P075(SIM)B: Poly	vnuclear Aromatic Hydrocarbons (QCLot: 3143	842)					
ES1323785-002	ELP8 LOT 14 SP8	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	82.0	70	130
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	79.6	70	130
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 3143841)						
ES1323785-002	ELP8 LOT 14 SP8	EP071: C10 - C14 Fraction		640 mg/kg	85.3	73	137
		EP071: C15 - C28 Fraction		3140 mg/kg	84.6	53	131
		EP071: C29 - C36 Fraction		2860 mg/kg	71.9	52	132
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 3145986)						
ES1323785-002	ELP8 LOT 14 SP8	EP080: C6 - C9 Fraction		32.5 mg/kg	86.8	70	130
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 (QCLo	t: 3143841)					
ES1323785-002	ELP8 LOT 14 SP8	EP071: >C10 - C16 Fraction	>C10_C16	850 mg/kg	109	73	137
		EP071: >C16 - C34 Fraction		4800 mg/kg	77.1	53	131
		EP071: >C34 - C40 Fraction		2400 mg/kg	56.7	52	132
P080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 (QCLo	t: 3145986)					
ES1323785-002	ELP8 LOT 14 SP8	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	87.0	70	130
EP080: BTEXN (Q	CLot: 3145986)						
ES1323785-002	ELP8 LOT 14 SP8	EP080: Benzene	71-43-2	2.5 mg/kg	74.8	70	130
		EP080: Toluene	108-88-3	2.5 mg/kg	73.2	70	130
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	80.5	70	130
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	75.4	70	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	80.5	70	130

Page : 7 of 7
Work Order : ES1323785

Client : ENVIRON AUSTRALIA PTY LTD

Project : AS130348

Sub-Matrix: SOIL Matrix Spike (MS) Report							
			Spike	e SpikeRecovery(%) Recove		imits (%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080: BTEXN (Q	CLot: 3145986) - continued						
ES1323785-002	ELP8 LOT 14 SP8	EP080: Naphthalene	91-20-3	2.5 mg/kg	80.1	70	130

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

The quality control term Matrix Spike (MS) and Matrix Spike Duplicate (MSD) refers to intralaboratory split samples spiked with a representative set of target analytes. The purpose of these QC parameters are to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL					Matrix Spike (MS) and Matrix S	pike Duplicate	(MSD) Repor	t	
				Spike	Spike Re	covery (%)	Recovery	Limits (%)	RP	PDs (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EP080/071: Total F	Petroleum Hydrocarbons (QCL	_ot: 3143841)								
ES1323785-002	ELP8 LOT 14 SP8	EP071: C10 - C14 Fraction		640 mg/kg	85.3		73	137		
		EP071: C15 - C28 Fraction		3140 mg/kg	84.6		53	131		
		EP071: C29 - C36 Fraction		2860 mg/kg	71.9		52	132		
EP080/071: Total F	Recoverable Hydrocarbons - N	EPM 2013 (QCLot: 3143841)								
ES1323785-002	ELP8 LOT 14 SP8	EP071: >C10 - C16 Fraction	>C10_C16	850 mg/kg	109		73	137		
		EP071: >C16 - C34 Fraction		4800 mg/kg	77.1		53	131		
		EP071: >C34 - C40 Fraction		2400 mg/kg	56.7		52	132		
EP075(SIM)B: Poly	nuclear Aromatic Hydrocarbo	ns (QCLot: 3143842)								
ES1323785-002 ELP8 LC	ELP8 LOT 14 SP8	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	82.0		70	130		
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	79.6		70	130		
EK040S: Fluoride	Soluble (QCLot: 3144606)									
ES1323625-008	Anonymous	EK040S: Fluoride	16984-48-8	50 mg/kg	108		70	130		
EP080/071: Total F	Petroleum Hydrocarbons (QCL	_ot: 3145986)								
ES1323785-002	ELP8 LOT 14 SP8	EP080: C6 - C9 Fraction		32.5 mg/kg	86.8		70	130		
EP080/071: Total F	Recoverable Hydrocarbons - N	EPM 2013 (QCLot: 3145986)								
ES1323785-002	ELP8 LOT 14 SP8	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	87.0		70	130		
EP080: BTEXN (Q	CLot: 3145986)									
ES1323785-002	ELP8 LOT 14 SP8	EP080: Benzene	71-43-2	2.5 mg/kg	74.8		70	130		
		EP080: Toluene	108-88-3	2.5 mg/kg	73.2		70	130		
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	80.5		70	130		
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	75.4		70	130		
			106-42-3							
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	80.5		70	130		
		EP080: Naphthalene	91-20-3	2.5 mg/kg	80.1		70	130		

INTERPRETIVE QUALITY CONTROL REPORT

Work Order : **ES1323785** Page : 1 of 6

Client : ENVIRON AUSTRALIA PTY LTD Laboratory : Environmental Division Sydney

Contact : MR STEVE CADMAN Contact : Client Services

Address : PO BOX 560 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

NORTH SYDNEY NSW, AUSTRALIA 2060

Telephone : +61 02 99548114 Telephone : +61-2-8784 8555

Facsimile : +61-2-8784 8500

Project : AS130348 QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

C-O-C number : ---- Date Samples Received : 04-NOV-2013

Sampler : KW Issue Date : 11-NOV-2013
Order number :----

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Site

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

Page : 2 of 6
Work Order : ES1323785

Client : ENVIRON AUSTRALIA PTY LTD

Project : AS130348

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with recommended holding times (USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL					Evaluation	× = Holding time	breach ; ✓ = Withir	n holding tim
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content								
Pulp Bag (EA055-103) ELP8 LOT 14 SF4, ELP8 LOT 14 SF3, ELP8 LOT 14 SF2	ELP8 LOT 14 SF1, ELP8 LOT 14 SF5,	01-NOV-2013				08-NOV-2013	15-NOV-2013	✓
Soil Glass Jar - Unpreserved (EA055-103) ELP8 LOT 14 SP8, ELP8 LOT 14 SP7, ELP8 LOT 14 SPQA1,	ELP8 LOT 14 SP3, ELP8 LOT 14 SP5, ELP8 LOT 14 SP4	01-NOV-2013				08-NOV-2013	15-NOV-2013	✓
EK040: Fluoride								
Pulp Bag (EK040S) ELP8 LOT 14 SF4, ELP8 LOT 14 SF3, ELP8 LOT 14 SF2	ELP8 LOT 14 SF1, ELP8 LOT 14 SF5,	01-NOV-2013	06-NOV-2013	08-NOV-2013	✓	08-NOV-2013	04-DEC-2013	✓
EP080/071: Total Recoverable Hydrocarbons -	NEPM 2013							!
Soil Glass Jar - Unpreserved (EP071) ELP8 LOT 14 SP8, ELP8 LOT 14 SP7, ELP8 LOT 14 SPQA1,	ELP8 LOT 14 SP3, ELP8 LOT 14 SP5, ELP8 LOT 14 SP4	01-NOV-2013	06-NOV-2013	15-NOV-2013	✓	07-NOV-2013	16-DEC-2013	✓
EP075(SIM)B: Polynuclear Aromatic Hydrocarl	oons							
Soil Glass Jar - Unpreserved (EP075(SIM)) ELP8 LOT 14 SP8, ELP8 LOT 14 SP7, ELP8 LOT 14 SPQA1,	ELP8 LOT 14 SP3, ELP8 LOT 14 SP5, ELP8 LOT 14 SP4	01-NOV-2013	06-NOV-2013	15-NOV-2013	✓	08-NOV-2013	16-DEC-2013	✓
EP080: BTEXN								
Soil Glass Jar - Unpreserved (EP080) ELP8 LOT 14 SP8, ELP8 LOT 14 SP7, ELP8 LOT 14 SPQA1,	ELP8 LOT 14 SP3, ELP8 LOT 14 SP5, ELP8 LOT 14 SP4	01-NOV-2013	07-NOV-2013	15-NOV-2013	✓	07-NOV-2013	15-NOV-2013	✓

Page : 3 of 6
Work Order : ES1323785

Client : ENVIRON AUSTRALIA PTY LTD

Project : AS130348

Matrix: SOIL					Evaluation:	× = Holding time	breach; ✓ = Withir	n holding time.
Method	Sample Date	Extraction / Preparation			Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Recoverable Hydrocarb	ons - NEPM 2013							
Soil Glass Jar - Unpreserved (EP080)								
ELP8 LOT 14 SP8,	ELP8 LOT 14 SP3,	01-NOV-2013	07-NOV-2013	15-NOV-2013	✓	07-NOV-2013	15-NOV-2013	✓
ELP8 LOT 14 SP7,	ELP8 LOT 14 SP5,							
ELP8 LOT 14 SPQA1,	ELP8 LOT 14 SP4							

Page : 4 of 6 Work Order ES1323785

ENVIRON AUSTRALIA PTY LTD Client

AS130348 Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluation	n: × = Quality Col	ntrol frequency r	not within specification; ✓ = Quality Control frequency within specifica
Quality Control Sample Type		C	ount	Rate (%)			Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
_aboratory Duplicates (DUP)							
Fluoride - Soluble	EK040S	2	19	10.5	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Moisture Content	EA055-103	2	19	10.5	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PAH/Phenols (SIM)	EP075(SIM)	1	6	16.7	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
FPH - Semivolatile Fraction	EP071	1	6	16.7	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PH Volatiles/BTEX	EP080	2	17	11.8	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
_aboratory Control Samples (LCS)							
Fluoride - Soluble	EK040S	1	19	5.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PAH/Phenols (SIM)	EP075(SIM)	1	6	16.7	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
ГРН - Semivolatile Fraction	EP071	1	6	16.7	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	1	17	5.9	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
Fluoride - Soluble	EK040S	1	19	5.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PAH/Phenols (SIM)	EP075(SIM)	1	6	16.7	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
FPH - Semivolatile Fraction	EP071	1	6	16.7	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PH Volatiles/BTEX	EP080	1	17	5.9	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
Fluoride - Soluble	EK040S	1	19	5.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PAH/Phenols (SIM)	EP075(SIM)	1	6	16.7	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PH - Semivolatile Fraction	EP071	1	6	16.7	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PH Volatiles/BTEX	EP080	1	17	5.9	5.0	1	NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Page : 5 of 6 Work Order : ES1323785

Client : ENVIRON AUSTRALIA PTY LTD

Project : AS130348

ALS

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055-103	SOIL	A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Fluoride - Soluble	EK040S	SOIL	APHA 21st ed., 4500 FC Soluble Fluoride is determined after a 1:5 soil/water extract using an ion selective electrode.
TPH - Semivolatile Fraction	EP071	SOIL	(USEPA SW 846 - 8015A) Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C36. This method is compliant with NEPM (2013) Schedule B(3) (Method 506.1)
PAH/Phenols (SIM)	EP075(SIM)	SOIL	(USEPA SW 846 - 8270B) Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)
TPH Volatiles/BTEX	EP080	SOIL	(USEPA SW 846 - 8260B) Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 501)
Preparation Methods	Method	Matrix	Method Descriptions
1:5 solid / water leach for soluble analytes	EN34	SOIL	10 g of soil is mixed with 50 mL of distilled water and tumbled end over end for 1 hour. Water soluble salts are leached from the soil by the continuous suspension. Samples are settled and the water filtered off for analysis.
Methanolic Extraction of Soils for Purge and Trap	* ORG16	SOIL	(USEPA SW 846 - 5030A) 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids (Option B - Non-concentrating)	ORG17B	SOIL	In-house, Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 20mL 1:1 DCM/Acetone by end over end tumble. The solvent is transferred directly to a GC vial for analysis.

Page : 6 of 6 Work Order : ES1323785

Client : ENVIRON AUSTRALIA PTY LTD

Project : AS130348

Summary of Outliers

Outliers: Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW 846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

No Quality Control Sample Frequency Outliers exist.

CERTIFICATE OF ANALYSIS

Work Order : **ES1408818** Page : 1 of 8

Client : ENVIRON AUSTRALIA PTY LTD Laboratory : Environmental Division Sydney

Contact : STEVE CADMAN Contact : Client Services

Address : Eastpoint Complex | Suite 19B, Level 2 50 Glebe Road | PO Box Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

435 | The Junction NSW 2291

 Telephone
 : --- Telephone
 : +61-2-8784 8555

 Facsimile
 : --- Facsimile
 : +61-2-8784 8500

Project : HYDRO BUFFER ZONE INVESTIGATION QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number : AS130348

 C-O-C number
 : -- Date Samples Received
 : 20-MAR-2014

 Sampler
 : KW, SC
 Issue Date
 : 29-APR-2014

Site : ----

Quote number : SY/433/13 No. of samples received : 4

Quote number : SY/433/13 No. of samples analysed : 4

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Descriptive Results
- Surrogate Control Limits

Page : 2 of 8
Work Order : ES1408818

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category	
Ashesh Patel	Inorganic Chemist	Sydney Inorganics	
Celine Conceicao	Senior Spectroscopist	Sydney Inorganics	
Pabi Subba	Senior Organic Chemist	Sydney Organics	
Shaun Spooner	Asbestos Identifier	Newcastle - Asbestos	
Wisam Marassa	Inorganics Coordinator	Sydney Inorganics	

Page : 3 of 8
Work Order : ES1408818

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

Sub-Matrix: SOIL (Matrix: SOIL)		Cli	ent sample ID	P8 TP1 0.2-0.5	P8 TP2 0.2-0.5	P8 TP3 0.2-0.5	P8 TP5 0.1-0.3	
	CI	ient sampli	ing date / time	19-MAR-2014 15:00	19-MAR-2014 15:00	19-MAR-2014 15:00	19-MAR-2014 15:00	
Compound	CAS Number	LOR	Unit	ES1408818-001	ES1408818-002	ES1408818-003	ES1408818-004	
EA002 : pH (Soils)								
pH Value		0.1	pH Unit		4.7			
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		1.0	%	5.4	3.8	1.7	5.8	
EA200: AS 4964 - 2004 Identification	of Asbestos in bulk	samples						
Asbestos Detected	1332-21-4	0.1	g/kg	No	No	No	No	
Asbestos Type	1332-21-4	-		-	-	-	-	
Sample weight (dry)		0.01	g	35.2	38.4	42.2	38.9	
APPROVED IDENTIFIER:		-		S.SPOONER	S.SPOONER	S.SPOONER	S.SPOONER	
ED008: Exchangeable Cations								
Exchangeable Calcium		0.1	meq/100g		0.2			
Exchangeable Magnesium		0.1	meq/100g		0.4			
Exchangeable Potassium		0.1	meq/100g		<0.1			
Exchangeable Sodium		0.1	meq/100g		<0.1			
Cation Exchange Capacity		0.1	meq/100g		0.7			
EG005T: Total Metals by ICP-AES								
Arsenic	7440-38-2	5	mg/kg	<5	<5	<5	<5	
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	
Chromium	7440-47-3	2	mg/kg	2	4	2	4	
Copper	7440-50-8	5	mg/kg	<5	<5	<5	<5	
Lead	7439-92-1	5	mg/kg	6	15	7	8	
Nickel	7440-02-0	2	mg/kg	<2	<2	<2	<2	
Zinc	7440-66-6	5	mg/kg	12	9	14	18	
EG035T: Total Recoverable Mercury	/ by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	
EP004: Organic Matter								
Organic Matter		0.5	%		1.3			
Total Organic Carbon		0.5	%		0.8			
EP068A: Organochlorine Pesticides	(OC)							
alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	

Page : 4 of 8 Work Order : ES1408818

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

ALS

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	P8 TP1 0.2-0.5	P8 TP2 0.2-0.5	P8 TP3 0.2-0.5	P8 TP5 0.1-0.3	
	Cli	ent samplii	ng date / time	19-MAR-2014 15:00	19-MAR-2014 15:00	19-MAR-2014 15:00	19-MAR-2014 15:00	
Compound	CAS Number	LOR	Unit	ES1408818-001	ES1408818-002	ES1408818-003	ES1408818-004	
EP068A: Organochlorine Pesticides								
Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
^ Total Chlordane (sum)		0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
^ Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Sum of DDD + DDE + DDT		0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
EP068B: Organophosphorus Pestici	ides (OP)							
Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	
Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	
Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	
Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	

Page : 5 of 8 Work Order : ES1408818

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

ALS

Compound EP068B: Organophosphorus Pesticides (OP) Bromophos-ethyl Fenamiphos	CAS Number	LOR 0.05 0.05	ng date / time Unit mg/kg	19-MAR-2014 15:00 ES1408818-001	19-MAR-2014 15:00 ES1408818-002	19-MAR-2014 15:00 ES1408818-003	19-MAR-2014 15:00 ES1408818-004	
EP068B: Organophosphorus Pesticides (OP Bromophos-ethyl	4824-78-6 22224-92-6	0.05		ES1408818-001	ES1408818-002	ES1408818-003	ES1408818-004	
EP068B: Organophosphorus Pesticides (OP Bromophos-ethyl	4824-78-6 22224-92-6	0.05						
Bromophos-ethyl	4824-78-6 22224-92-6		mg/kg					
•	22224-92-6			< 0.05	<0.05	<0.05	<0.05	
			mg/kg	<0.05	<0.05	<0.05	<0.05	
Prothiofos	0.0.0.0	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
EP075(SIM)B: Polynuclear Aromatic Hydroca								
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Sum of polycyclic aromatic hydrocarbons		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	0.6	0.6	
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2	1.2	
EP080/071: Total Petroleum Hydrocarbons								
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	
C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	

Page : 6 of 8
Work Order : ES1408818

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

ALS

Sub-Matrix: SOIL (Matrix: SOIL)		Cli	ent sample ID	P8 TP1 0.2-0.5	P8 TP2 0.2-0.5	P8 TP3 0.2-0.5	P8 TP5 0.1-0.3	
	Cli	ient sampli	ing date / time	19-MAR-2014 15:00	19-MAR-2014 15:00	19-MAR-2014 15:00	19-MAR-2014 15:00	
Compound	CAS Number	LOR	Unit	ES1408818-001	ES1408818-002	ES1408818-003	ES1408818-004	
EP080/071: Total Recoverable Hydro	carbons - NEPM 201	3						
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	
C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	
>C10 - C16 Fraction	>C10_C16	50	mg/kg	<50	<50	<50	<50	
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	
^ >C10 - C16 Fraction minus Naphthalene (F2)		50	mg/kg	<50	<50	<50	<50	
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	
^ Total Xylenes	1330-20-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	
EP068S: Organochlorine Pesticide S	urrogate							
Dibromo-DDE	21655-73-2	0.1	%	113	101	104	119	
EP068T: Organophosphorus Pesticio	de Surrogate							
DEF	78-48-8	0.1	%	105	90.9	89.5	104	
EP075(SIM)S: Phenolic Compound S	urrogates							
Phenol-d6	13127-88-3	0.1	%	101	87.9	93.3	107	
2-Chlorophenol-D4	93951-73-6	0.1	%	101	101	97.6	109	
2.4.6-Tribromophenol	118-79-6	0.1	%	67.1	71.6	68.9	73.8	
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.1	%	85.2	83.5	101	90.5	
Anthracene-d10	1719-06-8	0.1	%	104	103	103	111	
4-Terphenyl-d14	1718-51-0	0.1	%	77.8	76.7	74.8	79.4	
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.1	%	116	119	126	118	
Toluene-D8	2037-26-5	0.1	%	102	98.4	107	94.2	
4-Bromofluorobenzene	460-00-4	0.1	%	90.5	89.2	97.8	86.4	

Page : 7 of 8
Work Order : ES1408818

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

ALS

Analytical Results Descriptive Results

Sub-Matrix: SOIL

Method: Compound	Client sample ID - Client sampling date / time	Analytical Results				
EA200: AS 4964 - 2004 Identification of Asbestos in bulk samples						
EA200: Description	P8 TP1 0.2-0.5 - 19-MAR-2014 15:00	Mid brown sandy soil with some grey rocks plus a trace of vegetation.				
EA200: Description	P8 TP2 0.2-0.5 - 19-MAR-2014 15:00	Mid yellow clay soil with grey rocks plus a trace of vegetation.				
EA200: Description	P8 TP3 0.2-0.5 - 19-MAR-2014 15:00	Mid brown sandy soil with grey and orange rocks plus some vegetation.				
EA200: Description	P8 TP5 0.1-0.3 - 19-MAR-2014 15:00	Mid brown sandy soil with grey rocks plus some vegetation.				

Page : 8 of 8 Work Order : ES1408818

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

ALS

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP068S: Organochlorine Pesticide S	Surrogate		
Dibromo-DDE	21655-73-2	49	147
EP068T: Organophosphorus Pestici	de Surrogate		
DEF	78-48-8	35	143
EP075(SIM)S: Phenolic Compound S	Surrogates		
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	72.8	133.2
Toluene-D8	2037-26-5	73.9	132.1
4-Bromofluorobenzene	460-00-4	71.6	130.0

QUALITY CONTROL REPORT

Work Order : **ES1408818** Page : 1 of 7

Client : ENVIRON AUSTRALIA PTY LTD Laboratory : Environmental Division Sydney

Contact : STEVE CADMAN Contact : Client Services

Address : Eastpoint Complex | Suite 19B, Level 2 50 Glebe Road | PO Box Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

435 | The Junction NSW 2291

 Telephone
 : -- Telephone
 : +61-2-8784 8555

 Facsimile
 : -- Facsimile
 : +61-2-8784 8500

Project : HYDRO BUFFER ZONE INVESTIGATION QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Site : ----

 C-O-C number
 : --- Date Samples Received
 : 20-MAR-2014

 Sampler
 : KW, SC
 Issue Date
 : 29-APR-2014

Order number : AS130348

No. of samples received : 4

Quote number : SY/433/13 No. of samples analysed : 4

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Page : 2 of 7 Work Order : ES1408818

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ashesh Patel	Inorganic Chemist	Sydney Inorganics
Celine Conceicao	Senior Spectroscopist	Sydney Inorganics
Pabi Subba	Senior Organic Chemist	Sydney Organics
Shaun Spooner	Asbestos Identifier	Newcastle - Asbestos
Wisam Marassa	Inorganics Coordinator	Sydney Inorganics

Page : 3 of 7
Work Order : ES1408818

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: SOIL			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA002 : pH (Soils) ((QC Lot: 3400690)								
ES1408818-002	P8 TP2 0.2-0.5	EA002: pH Value		0.1	pH Unit	4.7	4.4	6.6	0% - 20%
ED008: Exchangeable Cations (QC Lot: 3403155)									
ES1408817-001	Anonymous	ED008: Exchangeable Calcium		0.1	meq/100g	4.8	4.8	0.0	0% - 20%
		ED008: Exchangeable Magnesium		0.1	meq/100g	2.5	2.5	0.0	0% - 20%
		ED008: Exchangeable Potassium		0.1	meq/100g	0.3	0.3	0.0	0% - 20%
		ED008: Exchangeable Sodium		0.1	meq/100g	0.1	0.1	0.0	0% - 20%
		ED008: Cation Exchange Capacity		0.1	meq/100g	7.7	7.7	0.0	0% - 20%
EP004: Organic Matter (QC Lot: 3402744)									
ES1408817-001	Anonymous	EP004: Organic Matter		0.5	%	<0.5	<0.5	0.0	No Limit
		EP004: Total Organic Carbon		0.5	%	<0.5	<0.5	0.0	No Limit

Page : 4 of 7
Work Order : ES1408818

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB) Report	Laboratory Control Spike (LCS) Report				
					Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
ED008: Exchangeable Cations (QCLot: 3403155	5)								
ED008: Exchangeable Calcium		0.1	meq/100g	<0.1	1 meq/100g	100	90	128	
ED008: Exchangeable Magnesium		0.1	meq/100g	<0.1	1.67 meq/100g	100	86	120	
ED008: Exchangeable Potassium		0.1	meq/100g	<0.1	0.51 meq/100g	100	85	135	
ED008: Exchangeable Sodium		0.1	meq/100g	<0.1	0.87 meq/100g	100	86	128	
ED008: Cation Exchange Capacity		0.1	meq/100g	<0.1					
EG005T: Total Metals by ICP-AES (QCLot: 3400	304)								
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	21.7 mg/kg	114	92	130	
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	4.64 mg/kg	108	87	121	
EG005T: Chromium	7440-47-3	2	mg/kg	<2	43.9 mg/kg	105	80	136	
EG005T: Copper	7440-50-8	5	mg/kg	<5	32.0 mg/kg	112	93	127	
EG005T: Lead	7439-92-1	5	mg/kg	<5	40.0 mg/kg	106	86	124	
EG005T: Nickel	7440-02-0	2	mg/kg	<2	55.0 mg/kg	109	93	131	
EG005T: Zinc	7440-66-6	5	mg/kg	<5	60.8 mg/kg	115	81	133	
EG035T: Total Recoverable Mercury by FIMS (QCLot: 3400305)								
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	2.57 mg/kg	91.1	70	105	
EP004: Organic Matter (QCLot: 3402744)									
EP004: Organic Matter		0.5	%	<0.5	4.58 %	94.5	85	105	
EP004: Total Organic Carbon		0.5	%	<0.5	2.66 %	94.4	84	106	
EP068A: Organochlorine Pesticides (OC) (QCL	ot: 3399558)								
EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	0.5 mg/kg	88.8	71	113	
EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	0.5 mg/kg	93.0	66	122	
EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	0.5 mg/kg	92.6	69	119	
EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	0.5 mg/kg	89.0	71	115	
EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	82.5	65	113	
EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	0.5 mg/kg	92.1	68	116	
EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	0.5 mg/kg	90.3	68	118	
EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	0.5 mg/kg	93.6	68	116	
EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	0.5 mg/kg	107	68	120	
EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	0.5 mg/kg	90.7	69	119	
EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	0.5 mg/kg	93.0	67	121	
EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	0.5 mg/kg	90.3	66	118	
EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	0.5 mg/kg	93.8	69	117	
EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	0.5 mg/kg	96.8	67	123	
EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	0.5 mg/kg	93.6	76	120	

Page : 5 of 7
Work Order : ES1408818

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

Sub-Matrix: SOIL	Method Blank (MB)	Laboratory Control Spike (LCS) Report					
			Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP068A: Organochlorine Pesticides (OC) (QCLot: 3399558) - continued							
EP068: 4.4`-DDD 72-54-8	0.05	mg/kg	<0.05	0.5 mg/kg	97.4	76	120
EP068: Endrin aldehyde 7421-93-4	0.05	mg/kg	<0.05	0.5 mg/kg	66.4	57.3	115
EP068: Endosulfan sulfate 1031-07-8	0.05	mg/kg	<0.05	0.5 mg/kg	81.9	60	124
EP068: 4.4`-DDT 50-29-3	0.2	mg/kg	<0.2	0.5 mg/kg	95.1	67	127
EP068: Endrin ketone 53494-70-5	0.05	mg/kg	<0.05	0.5 mg/kg	83.1	65	123
EP068: Methoxychlor 72-43-5	0.2	mg/kg	<0.2	0.5 mg/kg	90.0	65	129
EP068B: Organophosphorus Pesticides (OP) (QCLot: 3399558)							
EP068: Dichlorvos 62-73-7	0.05	mg/kg	<0.05	0.5 mg/kg	87.1	56	126
EP068: Demeton-S-methyl 919-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	84.0	64	128
EP068: Monocrotophos 6923-22-4	0.2	mg/kg	<0.2	0.5 mg/kg	78.0	54	122
EP068: Dimethoate 60-51-5	0.05	mg/kg	<0.05	0.5 mg/kg	80.7	64	124
EP068: Diazinon 333-41-5	0.05	mg/kg	<0.05	0.5 mg/kg	81.5	73	117
EP068: Chlorpyrifos-methyl 5598-13-0	0.05	mg/kg	<0.05	0.5 mg/kg	90.5	55	119
EP068: Parathion-methyl 298-00-0	0.2	mg/kg	<0.2	0.5 mg/kg	76.2	69	123
EP068: Malathion 121-75-5	0.05	mg/kg	<0.05	0.5 mg/kg	87.9	70	120
EP068: Fenthion 55-38-9	0.05	mg/kg	<0.05	0.5 mg/kg	86.6	71	115
EP068: Chlorpyrifos 2921-88-2	0.05	mg/kg	<0.05	0.5 mg/kg	96.5	68	114
EP068: Parathion 56-38-2	0.2	mg/kg	<0.2	0.5 mg/kg	89.1	68	122
EP068: Pirimphos-ethyl 23505-41-1	0.05	mg/kg	<0.05	0.5 mg/kg	97.6	69	115
EP068: Chlorfenvinphos 470-90-6	0.05	mg/kg	<0.05	0.5 mg/kg	86.8	70	118
EP068: Bromophos-ethyl 4824-78-6	0.05	mg/kg	<0.05	0.5 mg/kg	91.6	68	116
EP068: Fenamiphos 22224-92-6	0.05	mg/kg	<0.05	0.5 mg/kg	92.1	64	120
EP068: Prothiofos 34643-46-4	0.05	mg/kg	<0.05	0.5 mg/kg	93.9	68	116
EP068: Ethion 563-12-2	0.05	mg/kg	<0.05	0.5 mg/kg	91.8	70	118
EP068: Carbophenothion 786-19-6	0.05	mg/kg	<0.05	0.5 mg/kg	93.1	67	123
EP068: Azinphos Methyl 86-50-0	0.05	mg/kg	<0.05	0.5 mg/kg	62.3	42	126
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot: 3399562)							
EP075(SIM): Naphthalene 91-20-3	0.5	mg/kg	<0.5	4 mg/kg	91.0	80	124
EP075(SIM): Acenaphthylene 208-96-8	0.5	mg/kg	<0.5	4 mg/kg	92.9	77	123
EP075(SIM): Acenaphthene 83-32-9	0.5	mg/kg	<0.5	4 mg/kg	89.9	79	123
EP075(SIM): Fluorene 86-73-7	0.5	mg/kg	<0.5	4 mg/kg	93.0	77	123
EP075(SIM): Phenanthrene 85-01-8	0.5	mg/kg	<0.5	4 mg/kg	92.2	79	123
EP075(SIM): Anthracene 120-12-7	0.5	mg/kg	<0.5	4 mg/kg	90.3	79	123
EP075(SIM): Fluoranthene 206-44-0	0.5	mg/kg	<0.5	4 mg/kg	93.2	79	123
EP075(SIM): Pyrene 129-00-0	0.5	mg/kg	<0.5	4 mg/kg	93.9	79	125
EP075(SIM): Benz(a)anthracene 56-55-3	0.5	mg/kg	<0.5	4 mg/kg	86.8	73	121
EP075(SIM): Chrysene 218-01-9	0.5	mg/kg	<0.5	4 mg/kg	91.0	81	123
EP075(SIM): Benzo(b)fluoranthene 205-99-2	0.5	mg/kg	<0.5	4 mg/kg	85.4	70	118
EP075(SIM): Benzo(k)fluoranthene 207-08-9	0.5	mg/kg	<0.5	4 mg/kg	97.3	77	123

Page : 6 of 7
Work Order : ES1408818

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP075(SIM)B: Polynuclear Aromatic Hydrod	carbons (QCLot: 3399562) - con	tinued							
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	4 mg/kg	83.3	76	122	
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	4 mg/kg	82.6	71	113	
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	4 mg/kg	80.9	71.7	113	
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	4 mg/kg	82.8	72.4	114	
EP080/071: Total Petroleum Hydrocarbons	(QCLot: 3399559)								
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	90.1	68.4	128	
EP080/071: Total Petroleum Hydrocarbons	(QCLot: 3399561)								
EP071: C10 - C14 Fraction		50	mg/kg	<50	200 mg/kg	96.0	71	131	
EP071: C15 - C28 Fraction		100	mg/kg	<100	300 mg/kg	104	74	138	
EP071: C29 - C36 Fraction		100	mg/kg	<100	200 mg/kg	105	64	128	
EP080/071: Total Recoverable Hydrocarbon	ns - NEPM 2013 (QCLot: 3399559	9)							
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	84.5	68.4	128	
EP080/071: Total Recoverable Hydrocarbon	ns - NEPM 2013 (QCLot: 3399561	1)							
EP071: >C10 - C16 Fraction	>C10_C16	50	mg/kg	<50	250 mg/kg	96.8	70	130	
EP071: >C16 - C34 Fraction		100	mg/kg	<100	350 mg/kg	106	74	138	
EP071: >C34 - C40 Fraction		100	mg/kg	<100					
		50	mg/kg		150 mg/kg	101	63	131	
EP080: BTEXN (QCLot: 3399559)									
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	86.1	62	116	
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	84.3	62	128	
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	78.7	58	118	
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	79.2	60	120	
	106-42-3								
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	79.7	60	120	
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	91.9	62	138	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL			Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Recovery Li	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound CAS Num	ımber	Concentration	MS	Low	High
EP004: Organic Ma	tter (QCLot: 3402744)						
ES1408817-001	Anonymous	EP004: Organic Matter		4.58 %	104		
		EP004: Total Organic Carbon		2.66 %	103		

Page : 7 of 7 Work Order : ES1408818

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

The quality control term Matrix Spike (MS) and Matrix Spike Duplicate (MSD) refers to intralaboratory split samples spiked with a representative set of target analytes. The purpose of these QC parameters are to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL	Gub-Matrix: SOIL				Matrix Spike (N	rt				
				Spike	Spike Red	covery (%)	Recovery	Limits (%)	RPD	s (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EP004: Organic Ma	tter (QCLot: 3402744)									
ES1408817-001	Anonymous	EP004: Organic Matter		4.58 %	104					
		EP004: Total Organic Carbon		2.66 %	103					

INTERPRETIVE QUALITY CONTROL REPORT

Work Order : **ES1408818** Page : 1 of 8

Client : ENVIRON AUSTRALIA PTY LTD Laboratory : Environmental Division Sydney

Contact : STEVE CADMAN Contact : Client Services

Address : Eastpoint Complex | Suite 19B, Level 2 50 Glebe Road | PO Box Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

435 | The Junction NSW 2291

 Telephone
 : -- Telephone
 : +61-2-8784 8555

 Facsimile
 : -- Facsimile
 : +61-2-8784 8500

Project : HYDRO BUFFER ZONE INVESTIGATION QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Site : ----

 C-O-C number
 : -- Date Samples Received
 : 20-MAR-2014

 Sampler
 : KW, SC
 Issue Date
 : 29-APR-2014

Order number : AS130348

No. of samples received : 4

Quote number : SY/433/13 No. of samples analysed : 4

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Page : 2 of 8 Work Order : ES1408818

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with recommended holding times (USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL						Evaluation:	× = Holding time I	oreach ; ✓ = Withir	n holding time
Method		Sam	mple Date	Ext	traction / Preparation			Analysis	
Container / Client Sample ID(s)				Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA002 : pH (Soils)									
Soil Glass Jar - Unpreserved (EA002) P8 TP2 0.2-0.5		19-M.	MAR-2014	22-APR-2014	26-MAR-2014	k	25-MAR-2014	22-APR-2014	✓
EA055: Moisture Content									
Soil Glass Jar - Unpreserved (EA055-103) P8 TP1 0.2-0.5,	P8 TP2 0.2-0.5,	19-M	MAR-2014				25-MAR-2014	02-APR-2014	✓
P8 TP3 0.2-0.5,	P8 TP5 0.1-0.3								
EA200: AS 4964 - 2004 Identification of Asbestos	in bulk samples								
Snap Lock Bag (EA200) P8 TP1 0.2-0.5, P8 TP3 0.2-0.5,	P8 TP2 0.2-0.5, P8 TP5 0.1-0.3	19-М.	MAR-2014		15-SEP-2014		23-APR-2014	20-OCT-2014	✓
ED008: Exchangeable Cations									
Soil Glass Jar - Unpreserved (ED008) P8 TP2 0.2-0.5		19-M.	MAR-2014	24-APR-2014	16-APR-2014	æ	26-MAR-2014	16-APR-2014	✓
EG005T: Total Metals by ICP-AES									
Soil Glass Jar - Unpreserved (EG005T) P8 TP1 0.2-0.5,	P8 TP2 0.2-0.5,	19-M.	MAR-2014	22-APR-2014	15-SEP-2014	✓	22-APR-2014	15-SEP-2014	✓
P8 TP3 0.2-0.5,	P8 TP5 0.1-0.3								
EG035T: Total Recoverable Mercury by FIMS Soil Glass Jar - Unpreserved (EG035T)			<u> </u>						
P8 TP3 0.2-0.5, P8 TP3 0.2-0.5,	P8 TP2 0.2-0.5, P8 TP5 0.1-0.3	19-M.	MAR-2014	22-APR-2014	16-APR-2014	<u>se</u>	22-APR-2014	16-APR-2014	×
EP004: Organic Matter									
Soil Glass Jar - Unpreserved (EP004) P8 TP2 0.2-0.5		19-M.	MAR-2014	23-APR-2014	16-APR-2014	<u>k</u>	28-MAR-2014	16-APR-2014	✓
EP068A: Organochlorine Pesticides (OC)									
Soil Glass Jar - Unpreserved (EP068) P8 TP1 0.2-0.5, P8 TP3 0.2-0.5,	P8 TP2 0.2-0.5, P8 TP5 0.1-0.3	19-M.	MAR-2014	24-MAR-2014	02-APR-2014	1	19-APR-2014	03-MAY-2014	✓
EP068B: Organophosphorus Pesticides (OP)									<u>!</u>
Soil Glass Jar - Unpreserved (EP068) P8 TP1 0.2-0.5, P8 TP3 0.2-0.5,	P8 TP2 0.2-0.5, P8 TP5 0.1-0.3	19-M.	MAR-2014	24-MAR-2014	02-APR-2014	✓	19-APR-2014	03-MAY-2014	✓

Page : 3 of 8
Work Order : ES1408818

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

Matrix: SOIL					Evaluation	x = Holding time	breach; ✓ = Within	n holding tim
Method		Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)	Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Recoverable Hydroca	arbons - NEPM 2013							
Soil Glass Jar - Unpreserved (EP071)								
P8 TP1 0.2-0.5,	P8 TP2 0.2-0.5,	19-MAR-2014	24-MAR-2014	02-APR-2014	✓	20-APR-2014	03-MAY-2014	✓
P8 TP3 0.2-0.5,	P8 TP5 0.1-0.3							
EP075(SIM)B: Polynuclear Aromatic Hy	ydrocarbons							
Soil Glass Jar - Unpreserved (EP075(SII	M))							
P8 TP1 0.2-0.5,	P8 TP2 0.2-0.5,	19-MAR-2014	24-MAR-2014	02-APR-2014	✓	19-APR-2014	03-MAY-2014	✓
P8 TP3 0.2-0.5,	P8 TP5 0.1-0.3							
EP080: BTEXN								
Soil Glass Jar - Unpreserved (EP080)								
P8 TP1 0.2-0.5,	P8 TP2 0.2-0.5,	19-MAR-2014	24-MAR-2014	02-APR-2014	✓	28-APR-2014	02-APR-2014	×
P8 TP3 0.2-0.5,	P8 TP5 0.1-0.3							
EP080/071: Total Recoverable Hydroca	arbons - NEPM 2013							
Soil Glass Jar - Unpreserved (EP080)								
P8 TP1 0.2-0.5,	P8 TP2 0.2-0.5,	19-MAR-2014	24-MAR-2014	02-APR-2014	✓	28-APR-2014	02-APR-2014	x
P8 TP3 0.2-0.5,	P8 TP5 0.1-0.3							

Page : 4 of 8 Work Order : ES1408818

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: **SOIL**Evaluation: × = Quality Control frequency not within specification: ✓ = Quality Control frequency within specification.

watrix: SOIL Evaluation: ★ = Quality Control frequency not within specification; ▼							iot within specification, • = Quality Control frequency within specification
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Exchangeable Cations with pre-treatment	ED008	1	3	33.3	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Organic Matter	EP004	1	3	33.3	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
pH (1:5)	EA002	1	3	33.3	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)							
Exchangeable Cations with pre-treatment	ED008	1	3	33.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Organic Matter	EP004	1	3	33.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PAH/Phenols (SIM)	EP075(SIM)	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Pesticides by GCMS	EP068	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Mercury by FIMS	EG035T	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-AES	EG005T	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
Exchangeable Cations with pre-treatment	ED008	1	3	33.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Organic Matter	EP004	1	3	33.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PAH/Phenols (SIM)	EP075(SIM)	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Pesticides by GCMS	EP068	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Mercury by FIMS	EG035T	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-AES	EG005T	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
Organic Matter	EP004	1	3	33.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Page : 5 of 8
Work Order : ES1408818

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH (1:5)	EA002	SOIL	(APHA 21st ed., 4500H+) pH is determined on soil samples after a 1:5 soil/water leach. This method is compliant with NEPM (2013) Schedule B(3) (Method 103)
Moisture Content	EA055-103	SOIL	A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Asbestos Identification in bulk solids	EA200	SOIL	AS 4964 - 2004 Method for the qualitative identification of asbestos in bulk samples
Exchangeable Cations with pre-treatment	ED008	SOIL	Rayment & Higginson (1992) Method 15A2. Soluble salts are removed from the sample prior to analysis. Cations are exchanged from the sample by contact with Ammonium Chloride. They are then quantitated in the final solution by ICPAES and reported as meq/100g of original soil. This method is compliant with NEPM (2013) Schedule B(3) (Method 301)
Total Metals by ICP-AES	EG005T	SOIL	(APHA 21st ed., 3120; USEPA SW 846 - 6010) (ICPAES) Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	AS 3550, APHA 21st ed., 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Organic Matter	EP004	SOIL	AS1289.4.1.1 - 1997., Dichromate oxidation method after Walkley and Black. This method is compliant with NEPM (2013) Schedule B(3)
Pesticides by GCMS	EP068	SOIL	(USEPA SW 846 - 8270B) Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM (2013) Schedule B(3) (Method 504,505)
TPH - Semivolatile Fraction	EP071	SOIL	(USEPA SW 846 - 8015A) Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C36. This method is compliant with NEPM (2013) Schedule B(3) (Method 506.1)
PAH/Phenols (SIM)	EP075(SIM)	SOIL	(USEPA SW 846 - 8270B) Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)
TPH Volatiles/BTEX	EP080	SOIL	(USEPA SW 846 - 8260B) Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 501)
Preparation Methods	Method	Matrix	Method Descriptions
Exchangeable Cations Preparation Method	ED007PR	SOIL	Rayment & Higginson (1992) method 15A1. A 1M NH4Cl extraction by end over end tumbling at a ratio of 1:20. There is no pretreatment for soluble salts. Extracts can be run by ICP for cations.
1:5 solid / water leach for soluble analytes	EN34	SOIL	10 g of soil is mixed with 50 mL of distilled water and tumbled end over end for 1 hour. Water soluble salts are leached from the soil by the continuous suspension. Samples are settled and the water filtered off for analysis.

Page : 6 of 8
Work Order : ES1408818

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

Preparation Methods	Method	Matrix	Method Descriptions
Organic Matter	EP004-PR	SOIL	AS1289.4.1.1 - 1997., Dichromate oxidation method after Walkley and Black. This method is compliant with NEPM (2013) Schedule B(3) (Method 105)
Methanolic Extraction of Soils for Purge and Trap	* ORG16	SOIL	(USEPA SW 846 - 5030A) 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids (Option A - Concentrating)	ORG17A	SOIL	In-house, Mechanical agitation (tumbler). 20g of sample, Na2SO4 and surrogate are extracted with 150mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.
Tumbler Extraction of Solids (Option B - Non-concentrating)	ORG17B	SOIL	In-house, Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 20mL 1:1 DCM/Acetone by end over end tumble. The solvent is transferred directly to a GC vial for analysis.

Page : 7 of 8
Work Order : ES1408818

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

Summary of Outliers

Outliers: Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW 846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

Matrix: SOIL

Matrix: SOIL							
Method		Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days overdue	Date analysed	Due for analysis	Days overdue
EA002 : pH (Soils)							
Soil Glass Jar - Unpreserved							
P8 TP2 0.2-0.5		22-APR-2014	26-MAR-2014	27			
ED008: Exchangeable Cations							
Soil Glass Jar - Unpreserved							
P8 TP2 0.2-0.5		24-APR-2014	16-APR-2014	8			
EG035T: Total Recoverable Mercury by FIM	MS CONTRACTOR OF THE CONTRACTO						
Soil Glass Jar - Unpreserved							
P8 TP1 0.2-0.5,	P8 TP2 0.2-0.5,	22-APR-2014	16-APR-2014	6	22-APR-2014	16-APR-2014	6
P8 TP3 0.2-0.5,	P8 TP5 0.1-0.3						
EP004: Organic Matter							
Soil Glass Jar - Unpreserved							
P8 TP2 0.2-0.5		23-APR-2014	16-APR-2014	7			
EP080/071: Total Petroleum Hydrocarbons							
Soil Glass Jar - Unpreserved							
P8 TP1 0.2-0.5,	P8 TP2 0.2-0.5,				28-APR-2014	02-APR-2014	26
P8 TP3 0.2-0.5,	P8 TP5 0.1-0.3						
EP080/071: Total Recoverable Hydrocarbor	ns - NEPM 2013						
Soil Glass Jar - Unpreserved							
P8 TP1 0.2-0.5,	P8 TP2 0.2-0.5,				28-APR-2014	02-APR-2014	26
P8 TP3 0.2-0.5,	P8 TP5 0.1-0.3						

Page : 8 of 8 Work Order : ES1408818

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

Matrix: SOIL

Method			Extraction / Preparation	n		Analysis	
Container / Client Sample ID(s)		Date extra	cted Due for extraction	Days	Date analysed	Due for analysis	Days
				overdue			overdue
EP080: BTEXN							
Soil Glass Jar - Unpreserved							
P8 TP1 0.2-0.5,	P8 TP2 0.2-0.5,				28-APR-2014	02-APR-2014	26
P8 TP3 0.2-0.5,	P8 TP5 0.1-0.3						

Outliers : Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

No Quality Control Sample Frequency Outliers exist.

Appendix F

QA/QC Assessment

APPENDIX F

DATA QUALITY OBJECTIVES

To ensure that reliable data of adequate type was collected and assessed for the investigation, the seven-step Data Quality Objective (DQO) approach, endorsed in the NSW DEC (2006) Guidelines for the NSW Site Auditor Scheme 2nd Edition, will be adopted. The DQOs set quality assurance and quality control parameters for the field and laboratory programs to ensure data of appropriate reliability will be used to assess the environmental conditions at Parcel 8.

ENVIRON has developed DQOs in accordance with the seven-step process, which is presented below.

Step 1 – State the Problem

Based on the information available from the Phase 1 ESA, uses of Parcel 8 appear to be limited to a hobby farm, which was demolished and this area then used as a dirt bike track. The remainder of Parcel 8 has not been developed and remains dense bushland. These uses of Parcel 8 require confirmation via a site walkover and judgemental sampling. In addition, the potential for fluoride in surface soils from dust deposition from the Hydro smelter requires assessment.

Step 2 – Identification of the Goals (Decisions) of the Study

The following decisions are to be made from this study:

- Are the current and former uses of Parcel 8 consistent with site observations?
- Has Parcel 8 been impacted by fluoride from dust deposition from the Hydro smelter?
- Has Parcel 8 been impacted by other contaminants from historical site use?
- Is Parcel 8 suitable for the purposes of environmental conservation (E2) landuse?

Step 3 – Identify Information Inputs to the Decision or Goal of the Study

The inputs required to make the above decisions are listed below:

- A site walkover, including collection of field notes and photographs;
- Results of surface soil samples collected for fluoride analysis;
- Results of other soil samples from fill/ hummocky ground collected for suitable analysis during the site walkover;

- Proposed land use;
- Appropriate NSW contamination guidelines.

Step 4 – Define the Study Boundaries

Spatial boundaries - the study boundaries have been defined as the spatial boundary of Parcel 8, as shown on Figure 1.

Vertical boundaries – as areas of concern at Parcel 8 are restricted to surface soils, the vertical boundary of the study is the top 200mm unless subsurface contamination issues are identified during the site walkover.

Temporal boundaries – the temporal boundary is limited to the data collected during the investigation works.

Constraints within the study boundaries – This investigation does not require investigation of subsurface soils or groundwater unless impacts to subsurface soils or groundwater are considered likely to have occurred from the historical site activities

Step 5 – Develop a Decision Rule

The decision rules for this investigation are as follows:

- If it is determined that the data generated through this investigation is reliable for use in producing a site conceptual model and assessing the suitability of Parcel 8 for environmental conservation (E2) landuse, then an assessment of the suitability of Parcel 8 for environmental conservation (E2) landuse will be made;
- If it is determined that the data generated through this investigation is not suitable, comprehensive or reliable for use in producing a site conceptual model, then further investigations may be recommended prior to the development of a site conceptual model and assessment of the suitability of Parcel 8 for environmental conservation (E2) landuse.

Step 6 – Specify Performance or Acceptance Criteria that the Data need to Achieve

Acceptable limits on decision errors have been developed based on the Data Quality Indicators (DQIs) of precision, accuracy, representativeness, comparability and completeness. The DQIs for this investigation are outlined below.

The potential for significant decision errors were minimized by:

- Completion of a QA/QC assessment of the investigation data to assess if the data satisfies the DQIs;
- Assessment of whether appropriate sampling and analytical densities were completed for the purpose of the investigation; and

• Ensuring that the criteria set for the investigation were appropriate for the proposed use of Parcel 8.

Minimization of the potential for significant decision errors limits the potential that a conclusive statement may be incorrect.

Step 7 - Optimisation of the Design of Collection of Data

The collection of data was optimized by the completion of a Phase 1 ESA, data gap review and development of a sampling design, which is included in Section 4.3. Attainment of the DQOs has been assessed by reference to the DQIs, presented below.

DATA QUALITY INDICATORS

The project Data Quality Indicators (DQIs) have been established to set acceptance limits on field and laboratory data collected as part of this investigation. Field and laboratory procedures acceptance limits are set at different levels for different projects and by different laboratories. Non-compliances with acceptance limits are to be documented and discussed in the report. The DQIs are presented in Table A.

Table A:	Data Quality Indicators		
DQI	Field	Laboratory	Acceptability Limits
Completeness	All critical locations sampled, including targeted sampling of areas of environmental concern identified during the site walkover. Fluoride soil sampling completed on a reduced density to identify if fluoride in surface soils is an issue. All samples collected Experienced sampler Documentation correct	All critical samples analysed and all analytes analysed according to Standard Operating Procedures (SOPs) Appropriate Practical Quantitation Limits (PQLs) Sample documentation complete Sample holding times for critical analysis were complied with	As per NEPM (2013)
Represe Comparability ntativene ss	Experienced sampler In the event of multiple sampling events: Same types of samples collected Same sampling methodologies used Climatic conditions Appropriate media sampled Relevant media sampled	Same analytical methods used Same PQLs Same units Same primary and secondary laboratories All samples analysed according to SOPs	As per NEPM (2013)

	Collection of duplicate samples	Analysis of:	
	Sampling methodologies	Blind duplicate samples at rate of 1	RPD of 30 to 50%
u C	appropriate and complied with	in 10 samples	
Precision		Split duplicate samples at rate of 1	RPD of 30 to 50%
<u>re</u>		in 20 samples	
<u></u>		Laboratory duplicate samples	RPD of 30 to 50%
	Sampling methodologies	Analysis of:	
	appropriate and complied with.	Method blanks	Non-detect
		Matrix spikes	70 to 130%
े		Surrogate spikes	70-130%
<u>ra</u>		Laboratory control samples	70 to 130%
Accuracy		Reagent blanks	
Ā		Reference material	

QUALITY ASSURANCE AND QUALITY CONTROL

A quality assurance assessment for this report is presented in Table B and C below. An assessment was made of data completeness, comparability, representativeness, precision and accuracy based on field and laboratory considerations, as outlined in NSW DEC (2006) and NSW EPA (2007) guidelines.

Table B: QA/QC – Sampling and Analysis Methodology Assessment		
Sampling Methodology	Methodology	
Sampling Pattern and Locations	Surface soil sampling was undertaken around the edges of Parcel 8 to assess the impact of particulate fallout from Hydro Aluminium Smelter. The centre of Parcel 8 was not accessible for sampling due to dense bushland.	
	Soil samples were also collected from soil stockpiles on a targeted basis.	
Sampling Density	Five soil samples were collected from around the edges of Parcel 8 which is approximately 54 ha. The purpose of the sampling was to assess for impacts from smelter particulate fallout and therefore is considered suitable in density and spatial layout. It is noted that sample locations are near to access roads due to dense bush on the property. These sampling location, are considered to provide a reasonable assessment of the site despite being on the periphery due to their location adjacent to the track and potential for greater levels of fallout due to the absence of a tree canopy.	
	One soil sample was collected per targeted stockpile. The stockpiles ranged in size from 10m³ to 70m³.	
Sample depths	Surface soil samples were collected from a grid across the entire of Parcel 8 from surface soils.	
	Soil samples from the stockpile were collected from 0.05m to 0.1m from within the stockpile.	
Sample Collection Method	Surface soil samples across Parcel 8 were collected directly from the ground surface using using dedicated disposable gloves and a hand trowel. The hand trowel was brushed clean	

Table B: QA/QC – Sampling and Analysis Methodology Assessment		
Sampling Methodology	Methodology	
	prior to sample collection. Soil samples were collected into laboratory supplied, acid rinsed glass jars.	
Decontamination Procedures	Surface soil samples across Parcel 8 were collected directly from the ground surface using using dedicated disposable gloves and a hand trowel. The hand trowel was generally used to loosen the soil prior to sample collection and was brushed clean between sample locations.	
Sample handling and containers	All soil samples were placed into laboratory-supplied glass jars. Soil and water samples were placed on ice following collection and during transportation to the laboratory.	
Chain of Custody	Samples were transported to the laboratory under chain of custody conditions. The chain of custody forms were signed by the laboratory on receipt of the samples.	
Detailed description of field screening protocols	Field screening for volatiles was not completed during soil sampling as volatile contaminants were not the main chemical of concern.	
Calibration of field equipment	No field equipment requiring calibration was used.	
Sampling Logs	The lithology of surface soil samples was documented on the field information sheets, which are included in Appendix C.	

Table C: QA/QC – Field and Lab Quality Assurance and Quality Control		
Field and Lab QA/QC	ENVIRON Comments	
Field quality control samples	Intra-laboratory duplicate soil samples were analysed at a ratio of 1:6 for TPH, BTEX and PAHs analysed for the grid samples across the entire of Parcel 8. No rinsate blank samples were collected.	
Field quality control results	Intra-laboratory duplicate results are presented in Table C. There were no RPD exceedences for the intra-laboratory duplicates collected for this assessment.	
NATA registered laboratory and NATA endorsed methods	ALS was used as the primary laboratory. ALS laboratory certificates are NATA stamped and the lab is accredited for the analyses performed for this assessment.	
Analytical methods	A summary of analytical methods were included in the laboratory test certificates.	
Holding times	Review of the COCs and laboratory certificates indicate that holding times were met.	
Practical Quantitation Limits (PQLs)	PQLs for all soil analytes were below Parcel 8 assessment criteria.	
Laboratory quality control	Laboratory quality control samples including duplicates, laboratory control samples, matrix spikes, surrogate spikes and	

Table C: QA/QC – Field and Lab Quality Assurance and Quality Control		
Field and Lab QA/QC	ENVIRON Comments	
samples	blanks were undertaken by the laboratories at appropriate frequencies.	
Laboratory quality control results	All results for laboratory soil duplicates, laboratory control samples, matrix spikes and surrogates were acceptable and no detections were made in blank samples.	

Overall it is considered that the completed investigation works and the data obtained adequately complied with the requirements of NSW DEC (2006) and NSW EPA (2007) guidelines and that the data is of suitable quality to meet the project objectives.